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In the nanocylinder, a cut-off from the molecular crystal, dielectric permeability tensor is investigated.
Excitons in the nanocylinder arise due to the exciting of the electron subsystem of the molecule. In evaluation
of dielectric permeability Dzhyaloshinskii–Pitaevskii approach is used, connected with retarded and advanced
exciton Green’s functions and correct use of Paulion Green’s function. It turned out that refraction and absorption
indices depend on configuration coordinates, having maximal values at boundary cross-sections and minimal value
at central cross-section of the nanocylinder broken symmetry structure. Although it was expected that boundary
conditions make higher refractive and absorptive characteristics of the nanocylinder, this appeared not to be
possible because Paulion Green’s function is not proportional to the exciton concentration.

PACS numbers: 78.20Ci, 78.40Me

1. Introduction

Our goal is to investigate dielectric permeability ten-
sor εαβ , as well as tensors of nonlinear polarization of the
nanocylinder. In nonlinear optics, the vector of electrical
induction D is the series of different degrees of electri-
cal field components. The coefficient in the first term of
this series is dielectric permeability tensor, while in other
terms appear higher tensors of third range, fourth range
etc.

The idea of Dzyalosinski and Pitaevski [1], for equat-
ing the phenomenological value of the vector potential
from Maxwell’s equations with its nonequilibrium aver-
age value, is the bridge connecting optical phenomenol-
ogy with micro characteristic of molecular crystals. The
micro characteristic of crystals enters the retarded and
advanced Green’s functions of excitons [2]. In the case
of excitons which arise due to the excitations of elec-
tron subsystems, exciton Green’s functions are product
of Pauli or quasi Pauli operators [3–4]. Pauli operators
satisfy the following commutations rules:[

Pn, P+
m

]
=

(
1− 2P+

mPn

)
δn,m ; P 2

n =
(
P+

n

)2 = 0 ;

[Pn, Pm] =
[
P+

n , P+
m

]
= 0 . (1.1)

The commutation rules for quasi Pauli operators are still
more complicated and will be not quoted here.

The problems concerned with the calculation and the
use of Paulion Green’s function are the following:

1. Fourier transformation of Pauli operators Pn =
1√
N

∑
k e iaknPk is not canonical transformation. It

means that operators Pk are not Pauli operators.
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2. In calculations of average value 〈P+
n Pn〉 by means

of spectral intensity of Paulion Green’s func-
tion, positive correction proportional to square of
Paulion concentration appears, well known in liter-
ature as spurious error [5].

3. The application of Wick’s theorem to Pauli opera-
tors’ averages is not formulated up to now.

The mentioned arguments degrade Paulion Green’s func-
tions as the method in solving of nonlinear problems.
This is the reason to start with problem of finding the
correct use of Paulion Green’s function, which will be
done in the next section.

Finally we shall determine Green’s functions of the
nanocylinder. These Green’s functions will be used for
determining of dielectric permeability tensor and for find-
ing of nonlinear polarizability tensors of third of fourth
range, in order to find their dependence on configuration
coordinates in the nanocylinder broken symmetry struc-
ture.

2. Correct expression for Paulion
Green’s function

We shall consider here the linear infinite chain of
molecules. The procedure derived for linear chain can be
then extended for two and three dimensional structures.

The excitonic Hamiltonian of an ideal molecular chain,
in the nearest neighbours approximation, can be written
as follows:

HP = ∆
∑

n

P+
n Pn −W

∑
n

P+
n (Pn+1 + Pn−1)

−F
∑

n

P+
n Pn

(
P+

n+1 +Pn+1 +P+
n−1 +Pn−1

)
. (2.1)

Paulion Green’s function of the system is defined as:

(738)
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〈〈Pn(t)
∣∣P+

m(0)〉〉 = θ(t)〈[Pn(t), P+
m(0)

] 〉 . (2.2)
Differentiating Eq. (2.2) with respect to t and using
Fourier time-frequency transformation

f(t) =
∫ +∞

−∞
dω e− iωtf(ω) , (2.3)

we obtain the following equation for Paulion Green’s
function:

(E −∆) 〈〈Pn

∣∣P+
m〉〉ω =

i~
2π

(1− 2Np)

− W
[〈〈Pn+1

∣∣P+
m〉〉ω + 〈〈Pn−1

∣∣P+
m〉〉ω

]

+ 2W
(〈〈P+

n PnPn+1

∣∣P+
m 〉〉ω

+ 〈〈P+
n PnPn−1

∣∣P+
m 〉〉ω − 2〈〈P+

n+1Pn+1Pn

∣∣P+
m 〉〉ω

+ 〈〈P+
n−1Pn−1Pn

∣∣P+
m 〉〉ω ; Np ≡ 〈P+P 〉 . (2.4)

The higher order Green’s function, containing four
Pauli operators, will be decoupled by means of Tyab-
likov approximation [2, 5]

〈〈P+
n (t)Pn(t)Pl(t)

∣∣P+
m(0)〉〉ω ≈ Np0 = 〈〈Pl

∣∣P+
n 〉〉ω ;

Np0 ≡ 〈P+P 〉0 . (2.5)
Tyablikov’s approximation physically means substitution
of the scattering processes on real potential by the prop-
agation of particles through the soft potential.

After inserting Eq. (2.5) into Eq. (2.4) for Paulion
Green’s function, we have:

(E −∆) 〈〈Pn

∣∣P+
m〉〉ω =

i~
2π

δn,m (1− 2Np)

− (1− 2Np0)W
[〈〈Pn+1

∣∣P+
m 〉〉ω + 〈〈Pn−1

∣∣P+
m 〉〉ω

]

− 4FNp0〈〈Pn

∣∣P+
m 〉〉ω . (2.6)

Further solving of Eq. (2.6) requires application of non-
-canonical transformation

Pn =
1√
N

∑
n

e iknaPk , (2.7)

which reduces Eq. (2.6) to

〈〈P ∣∣P+〉〉k,ω =
i~
2π

1− 2Np

e−
E

(1)
k
θ − 1

;

E
(1)
k = ∆− 2W cos ak + 4 (W cos ak − F )Np0 . (2.8)

It should be noticed that correlator of Paulion Green’s
function (2.8) leads to spurious error [5].

We shall not use Paulion Green’s function (2.8) due to
the reasons [1–2] given in the Introduction. Instead, we
shall use equivalent bozon Green’s function, which will
be determined by means of the exact bozon representa-
tion for Pauli operators from [4]. In the considered case
it is sufficient to use this exact representation in the ap-
proximations

P = B −B+BB ; P+ = B+ −B+B+B ;

P+P = B+B −B+B+BB . (2.9)
Inserting Eq. (2.9) into Eq. (2.6), by means of Wick’s
theorem for bozons we obtain

(1− 4NB0) (E −∆) 〈〈Bn

∣∣B+
m 〉〉ω

+ (1− 2NB0)W 〈〈Bn+1

∣∣B+
m 〉〉

+ (1− 2NB0)W 〈〈Bn−1

∣∣B+
m 〉〉

=
i~
2π

δn,m (1− 2NB)− 4FNB0〈〈Bn

∣∣B+
m 〉〉 (2.10)

We note that in Eq. (2.10) squares of bozon concentration
are neglected.

Using Fourier transformation of Bose operator (which
is canonical transformation for bozons), we obtain the fol-
lowing equation for bozon Green’s function 〈〈Bk|B+

k 〉〉ω:
〈〈Bk

∣∣B+
k 〉〉ω =

i~
2π

1 + 2NB0

E − E
(1)
k

(2.11)

where
E

(1)
k = ∆− 2W cos ak + 4 (W cos ak − F )NB0 (2.12)

The energy of zero approximations is

E
(0)
k = ∆− 2W cos ak (2.13)

Now we shall calculate zero order value NB0. Taking
cos ak ≈ 1− 1

2a2k2 + 1
24a4k4, we obtain:

NB0 =
1
N

∑

k>0

1

e
E

(0)
k
θ − 1

=
(

θ

4πW

)1/2 ∞∑
n=1

e−n(∆−2W
θ )n−1/2

+
π

4

(
θ

4πW

)3/2 ∞∑
n=1

e−n(∆−2W
θ )n−3/2 (2.14)

For NB we obtain the formula:

NB =
1
N

∑

k>0

1

e
E

(1)
k
θ − 1

= NB0 −
{

C1/2(θ)
(

θ

4πW

)1/2

− C3/2(θ)
(

θ

4πW

)3/2

+ C5/2(θ)
(

θ

4πW

)5/2 }
NB0 , (2.15)

where

C1/2(θ) =
4(W–F)

θ

∞∑
n=1

e−n(∆−2W
θ )n1/2 , (2.16)

C3/2(θ) = π
(W + F )

θ

∞∑
n=1

e−n(∆−2W
θ )n−1/2 , (2.17)

C5/2(θ) = π2 W

θ

∞∑
n=1

e−n(∆−2W
θ )n−3/2 . (2.18)

Besides, in accordance with Eq. (2.9) we can take
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Np = NB − 2N2
B0 . (2.19)

Multiplying Eq. (2.8) and (2.11) we have
〈〈P ∣∣P+ 〉〉kω〈〈B

∣∣B+ 〉〉k,ω

=

(
i~
2π

1

E − E
(1)
k

)2

(1− 2Np)(1 + 2NB0)

=

(
i~
2π

1

E − E
(1)
k

)2 (
1− 2(NB0 −NB)

+ 4
(
N2

B0 −NB0NB

)
+ 8N3

B0

)
. (2.20)

It was said that all contributions proportional to N2
B0

and higher degrees of N2
B0 are to be neglected in this

analysis, so that we can write Eq. (2.20) as
〈〈P

∣∣P+ 〉〉kω〈〈B
∣∣B+ 〉〉k,ω

=

(
i~
2π

1

E − E
(1)
k

)2 (
1− 2(NB0 −NB)

)
. (2.21)

Now we shall estimate the value 2(NB0 − NB). Taking
only leading terms in NB and NB0 in Eq. (2.10) we have:

2(NB0 −NB) = 2
(W–F)
πW

∞∑
n=1

e−n(∆−2W
θ )n−1/2

×
∞∑

n=1

e−n(∆−2W
θ )n−3/2 . (2.22)

Since the maximal achieved exciton concentrations are
of the order 10−3 [2] we can take in Eq. (2.22) that
e−

∆−2W
θ = 10−3. This gives the estimation 2(NB0 −

NB) ≈ 10−6 ≈ N2
B0. Consequently, the term 2(NB0 −

NB) in Eq. (2.21) must be neglected and Eq. (2.21) be-
comes

〈〈P
∣∣P+ 〉〉kω〈〈B

∣∣B+ 〉〉k,ω =

(
i~
2π

1

E − E
(1)
k

)2

,

〈〈P
∣∣P+ 〉〉kω = 〈〈B

∣∣B+〉〉k,ω =

(
i~
2π

1

E − E
(1)
k

)
.

So, the correct use of Paulion Green’s function is:

〈〈P
∣∣P+ 〉〉kω =

(
i~
2π

1

E − E
(1)
k

)
;

E
(1)
k = ∆− 2W cos ak + 4 (W cos ak − F )Np0 (2.23)

It should be pointed out that this correct use of Paulion
Green’s functions does not lead to spuriours error, and
that gives the correct expression for low temperature
magnetization in the theory of magnetism.

3. Green’s functions of nanocylinder

Nanocylinder will be taken as a set of parallel discs
normal to z axis. Number of discs M is of the order
10. Number N of molecules in disc is also maximally
of the order 10. The discs will be labeled with integer
m ∈ (0,M). The molecules in disc will be labeled with
integer n ∈ (0, N) [6].

The boundary conditions are actual along z axis. In
this direction the discs labeled with m = −1 and m =
M + 1 are absent. So the boundary conditions can be
written as:

Xn,0;n,−1 = Xn,M ;n,M+1 ; Yn,0;n,−1 = Yn,M ;n,M+1 ;

Zn,0;n,−1 = Zn,M ;n,M+1 . (3.1)

If we assume that one of molecules is excited by energy
quant ∆, and take into account that interactions between
neighbour molecules in one disc and interaction between
corresponding molecules laying in neighbour discs differ,
the Hamiltonian of nanocylinder we can written in the
nearest neighbours approximation as follows:

H =
N∑

n=0

M∑
m=0

∆P+
nmPnm +

N∑
n=0

M∑
m=1

(
Xn,m;n+1,m + Xn,m;n−1,m + Xn,m;n,m+1 + Xn,m;n,m−1

)
P+

nmPnm

−
N∑

n=0

M−1∑
m=1

(
P+

n,mYn,m;n+1,mPn+1,m + Yn,m;n−1,mPn−1,m + Yn,m;n,m+1Pn,m+1 + Yn,m;n,m−1Pn,m−1

)

+
N∑

n=0

M−1∑
m=1

P+
nmPnm

(
Zn,m;n+1,mP+

n+1,mPn+1,m

+ Zn,m;n−1,mP+
n−1,mPn−1,m + Zn,m;n,m+1P

+
n,m+1Pn,m+1 + Zn,m;n,m−1P

+
n,m−1Pn,m−1

)

+
N∑

n=0

Xn,0;n,1P
+
n,0Pn,0 −

N∑
n=0

(
P+

n,0Yn,0;n+1,0Pn+1,0 + Yn,0;n−1,0Pn−1,0 + Yn,0;0,1Pn,1

)

+
N∑

n=0

P+
n0Pn0

(
Zn,0;n+1,0P

+
n+1,0Pn+1,0 + Zn,0;n−1,0P

+
n−1,0Pn−1,0 + Zn,0;n,1P

+
n,1Pn,1

)
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+
N∑

n=0

Xn,M ;n,M−1P
+
n,MPn,M −

N∑
n=0

(
P+

n,MYn,M ;n+1,MPn+1,M + Yn,M ;n−1,MPn−1,M + Yn,M ;n,M−1Pn,M−1

)

+
N∑

n=0

P+
nMPnM

(
Zn,M ;n+1,MP+

n+1,MPn+1,M + Zn,M ;n−1,MP+
n−1,MPn−1,M + Zn,M ;n,M−1P

+
n,M−1Pn,M−1

)
. (3.2)

In this Hamiltonian ∆ ≈ 5 eV is the energy of excitation
of an isolated molecule [7–9], while X, Y , and Z are
matrix elements of the dipole-dipole interaction which
are two orders of magnitude less than ∆. The terms
proportional to Z characterize dynamical interaction of
excitons.

It is important to note that system of molecules in
disc is cyclically invariant. It means that for arbitrary
physical characteristic F the following is valid:

Fn = Fn+(N+1) . (3.3)
For further evaluation it is important to point out the
cyclic rules Pn+(N+1) = Pn and e iakn = e iak(n+(N+1)),
wherefrom e iak(n+1) = 1. The last means that k = 2πν

N+1 ,
where ν is an integer. On this basis, Kronecker symbol
can be expressed in terms of plane waves:

δk,q =
1

N + 1

N∑
n=0

e ia(k−q)n

=

{
1 if k = q

1−e ia(k−q)(n+1)

1−e ia(k−q) = 0 if k 6= q
(3.4)

allowing that the system of disc molecules can be treated
as an ideal structure.

Introducing notations
Xn,m;n±1,m = C ; Yn,m;n±1,m = −D ;

Xn,m;n,m±1 = R ; Yn,m;n,m±1 = −S ;

Zn,m;n±1,m = −F ; Zn,m;n,m±1 = −L , (3.5)
we can write the Hamiltonian (3.2) as:

H =
N∑

n=0

M∑
m=1

∆P+
n,mPn,m

+
N∑

n=0

M−1∑
m=1

[
2 (C + R)P+

n,mPn,m −D
(
P+

n,mPn+1,m + P+
n,mPn−1,m

)− S
(
P+

n,mPn,m+1 + P+
n,mPn,m−1

) ]

−
N∑

n=0

M−1∑
m=1

[
FP+

n,mPn,m

(
P+

n+1,mPn+1,m + P+
n−1,mPn−1,m

)
+ LP+

n,mPn,m

(
P+

n,m+1Pn,m+1 + P+
n,m−1Pn,m−1

) ]

+ C

N∑
n=0

P+
n,0Pn,0 −

N∑
n=0

(
P+

n,0DPn+1,0 + DPn−1,0 + RPn,1

)

+
N∑

n=0

P+
n,0Pn,0

(
FP+

n+1,0Pn+1,0 + FP+
n−1,0Pn−1,0 + LP+

n,1Pn,1

)

+ C

N∑
n=0

P+
n,MPn,M −

N∑
n=0

(
P+

n,MDPn+1,M + DPn−1,M + RPn,M−1

)

+
N∑

n=0

P+
n,MPn,M

(
FP+

n+1,MPn+1,M + FP+
n−1,MPn−1,M + LP+

n,M−1Pn,M−1

)
. (3.6)

Paulion Green’s function will be denoted as:
Γn,m;n′,m′ (t, t′) = θ (t− t′) 〈[Pn,m(t), P+

n′,m′
]〉

≡ 〈〈Pn,m(t)
∣∣P+

n′,m′〉〉 . (3.7)
It will be determined by standard Green’s function solv-
ing procedure, although all problems pointed out in in-
troduction stay opened.

Differentiating Eq. (3.7) with respect to t, taking into
account equations of motion, and using transformation

Γn,m;n′m′(ω)

=
1

N + 1

∑
ν

e i(n−n′)τν γm,m′ (ω, ν) , (3.8)

with
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τν =
2πν

N + 1
, (3.9)

we obtain the following system of three difference equa-
tion [10]:

S̃ (γm+1,m + γm−1,m) + ργm,m′

=
i~
2π

(1− 2NP) δm,m′ ; 1 ≤ m ≤ M − 1 (3.10)

S̃γ1,m′ + (ρ + R− LNP0) γ0,m′

=
i~
2π

(1− 2NP) δm,m′ ; m = 0 (3.11)

S̃γM−1,m′ + (ρ + R− LNP0) γM,m′

=
i~
2π

(1− 2NP) δM,m′ ; m = M , (3.12)

where
S̃ = S (1− 2NP) ; D̃ = D (1− 2NP) ;

ρ = E −∆− 2D − 2R + 2D̃ cos τν ;

〈B+
n,mBn,m〉(0) = NB0 ≈ 〈P+

n,mPn,m〉(0) = NP0 ;

〈B+
n,mBn,m〉 = NB . (3.13)

By the substitution

γm,m′ (ω, ν) =
∑

σ

Aσ (m′, ν, ω)Λ(m) , (3.14)

where

Λ(m) = sin (m+1) ϕσ− R−LNP0

S (1−2NP0)
sin mϕσ , (3.15)

and parameter ϕσ satisfy the equation:

sin (M + 2) ϕσ − 2
R− LNP0

S (1−NP0)
sin (M + 1) ϕσ

+
[

R− LNP0

S (1− 2NP0)

]2

sin Mϕσ = 0 , (3.16)

the system of Eq. (3.10–3.12) reduces into one unique
equation:∑

σ

(
2S̃ cosϕσ + ρ

)
Aσ (m′, ω, ν)Ψσ(m)

=
i~
2π

(1 + 2NB0δm,m′) , m, m′ ∈ (0, 1, 2, . . . , N) .

(3.17)
Parameter ϕσ have real solutions of the Eq. (3.16), lay-
ing in the interval (0, π). Parameter ϕσ may not have
values m = 0 or m = M , since in these cases the Green’s
function becomes γ ≡ 0. Also, in the system the au-
toreduction process takes place. It means, that m takes
m + 1 values for m values of σ. It means that we must
in principle solve two problems: one problem is related
to the subsystem of m ∈ (0, 30) and the second problem
is related to the subsystem m ∈ (1, 31).

Taking that
Aσ (m′, ν, ω) = χ (ω, ν)Φσ (m′) , (3.18)

and∑
σ

Λσ (ω, ν)Φ (m′) = δn,m , (3.19)

since χσ(ω) ≡ 〈〈P+|P 〉〉, we can finally write the expres-
sion for Fourier image of the Paulion Green’s function:

〈〈P ∣∣P+ 〉〉σ,ω =
i~
2π

1− 2NP

E − E
(1)
σ

, (3.20)

where
E(1)

σ = ∆ + 2C + 2R− 2D (1− 2NB0) cos τν

− 2S (1− 2NB0) cos ϕσ − 4 (F + L) NB0 . (3.21)
Now we shall look for bozon Green’s function of the

nanocylinder. This bozon Green’s function is given by:
Gn,m;n′,m′ (t, t′) = θ (t− t′) 〈[Bn,m(t), B+

n′,m′
]〉

≡ 〈〈Bn,m(t)
∣∣B+

n′,m′〉〉 . (3.22)
By inserting Eq. (2.9) into Eq. (3.7), by absolutely

same procedure we can determine the bozon Green’s
function:

〈〈B
∣∣B+ 〉〉σ,ω =

i~
2π

1 + 2NB0

E − E
(1)
σ

. (3.23)

Multiplying Eq. (3.23) and (3.20) we obtain:
〈〈P ∣∣P+ 〉〉kω〈〈B

∣∣B+ 〉〉kω

=

(
i~
2π

1

E − E
(1)
k

)2

(1− 2Np)(1 + 2NB0)

=

(
i~
2π

1

E − E
(1)
k

)2 (
1− 2(NB0 −NB)

+ 4
(
N2

B0 −NB0NB

)
+ 8N3

B0

)
. (3.24)

In the first section it was demonstrated that all terms
added to unit on the right hand side of the Eq. (3.24)
are of the order N2

B0, i.e. of the order 10−6. This is
the reason to neglect all these terms. It means that
〈〈P |P+〉〉σ,ω〈〈B|B+〉〉σ,ω reduces to

〈〈P
∣∣P+ 〉〉σ,ω〈〈B

∣∣B+ 〉〉σ,ω =
(

i~
2π

1

E−E
(1)
σ

)2

. (3.25)

It means that Paulion Green’s function, which enters di-
electric permeability and nonlinear polarizability tensor,
is given by the Eq. (3.25).

4. Dielectric polarization of crystal

The dielectric permeability tensor εαβ(k, ω) represents
the relation between vacuum electrical field and its im-
ages in the material medium induction vector D. In
Fourier components this relation is given by the equa-
tion

Di (k, ω) = εαβ (k, ω) Ej (k, ω) . (4.1)
In accordance with Einstein convention, repeated index
means summation. The system of Maxwell’s equations,
where weak external currents are present and external
charges are absent, can be written as follows:



Dielectric Permeability of Nanocylinder 743

k ×B (k, ω) = −ω

c
D (k, ω) +

4π

ic
jext (k, ω) , (4.2)

k ×D (k, ω) = 0 , (4.3)

k ×E (k, ω) =
ω

c
B (k, ω) , (4.4)

k ×B (k, ω) = 0 . (4.5)
Since external charges are equal to zero the following con-
ditions are valid:

k ·D(k, ω) = k ·B(k, ω) = 0

If we use Lorentz calibration of vector potential A(k, ω),
we obtain equations:

B (k, ω) = rotA (k, ω) , (4.6)

E (k, ω) = −1
c

∂A (k, ω)
∂t

. (4.7)

By combining Maxwell’s Eq. (4.2), (4.4), and (4.1) with
Eq. (4.7) we obtain

E (k, ω) =
iω
c

A (k, ω) . (4.8)

Then we obtain the following relation between the vector
potential and the external forces:

∆αβ (k, ω)Aβ (k, ω) =
4π

c
jext (k, ω) . (4.9)

Consequently, the explicit relation for the vector poten-
tial components is [2]:

∆αβ (k, ω) = k2δαβ − kαkβ − ω2

c2
εαβ (k, ω) , (4.10)

and

Aβ (k, ω) =
4π

c
∆−1

αβ (k, ω) jext (k, ω) . (4.11)

This phenomenological value will be equated with the
non-equilibrium mean value vector potential. The inter-
action of the vector potential with the external currents
is defined as follows. The non-equilibrium mean value
vector potential we shall calculate by using S matrix of
the system, i.e.:

〈Aβ (r, t)〉n =
〈
T e−

1
i~

∫ +∞
−∞ dt′W (t′)

×Aα (r, t)T e
1
i~

∫ +∞
−∞ dt′W (t′)〉. (4.12)

In linear approximation in jext, we obtain non-
-equilibrium value of vector potential.

Vector potential has not physical sense. It is only
useful mathematical element of the theory. That is the
reason for going over of vector potential components to
components of electrical field, since electrical field com-
ponents are measurable. The final connecting of phe-
nomenological electromagnetic field and micro character-
istic of physical medium is given by formula [11–12]:

∆−1
αβ (k, ω) = − c2

ω2
δαβ + i

c2

ω2

aeEα (k)Eβ (k)
4~

×
[
GR (k, ω) + GA (k, ω)

]
, (4.13)

where ∆αβ(k, ω) is given by Eq. (4.10).
The obtained relation is complicated for analysis, so

in practice it is used in homogenous approximation and

with neglecting of space dispersion [12]. Then general
Eq. (4.13) can be written in the form:

ε−1
αβ (k, ω)

= 1 +
a3E (k)
8π~ω


 1

1− ω(k)
ω

− 1

1 +
ω(k)

ω


 . (4.14)

Retarded Green’s function GR(ν, ω) is given by formula

GR(ν, ω) =
i

2π

M∑
σ=1

Ψσ(m)Φσ(m′)
ω − ω1

. (4.15)

Advanced Green’s function GA(ν, ω) can be obtain from
Eq. (4.15) by inversion ω → −ω. Consequently

GA(ν, ω) =
i

2π

M∑
σ=1

Ψσ(m)Φσ(m′)
ω + ω1

. (4.16)

Putting Eq. (4.15) and (4.16) into Eq. (4.14) we obtain

ε−1
αβ (k, ω) = 1 +

a3E2(k)
8π~ω

[
M∑

σ=1

Ψσ(m)Φσ(m′)

×
(

1

1− ω(k)
ω

− 1

1 + ω(k)
ω

)]
. (4.17)

The obtained result points out that dielectric permeabil-
ity ε of the nanocylinder depends on the configuration
variables m i m′, and this is the main difference com-
pared to permeability of the ideal structure. With suit-
able choice of the functions Ψ and Φ, we can influence
the magnitude of permeability.

Ending these analyzes, we should say that after con-
struction of the high-power lasers it was registered that
material equation is not linear relation between vectors
D and E. Vector D is infinite series containing products
of electrical fields components. The coefficient of this se-
ries is called tensor of nonlinear polarizability. Relation
Dα = εαβEβ is only first term of the series [12]

Dα = εαβEβ + εαβγEαEβγ + εαβγδEαEβγδ + . . .

The tensors εαβγ and εαβγδ are so called nonlinear po-
larizability tensors. In the last formula, as well as in all
formulas of this section, repeated index denotes a sum-
mation.

5. Conclusion

Nanostructures are physical objects of great potential
practical interest. Here we investigated what could be
expected from nanocylinders in the linear and nonlinear
optics.

Dielectric properties of nanocylinder of finite length
were therefore analyzed. Defining the correct value of
Paulion Green’s functions, we determined dielectric per-
meability of the nanocylinder in z-direction, and found
that it depends on configuration coordinates. The ex-
pressions for transformation functions Ψ and Φ give pos-
sibility to change behaviour of the nanocylinder polariz-
ability.
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It was expected that boundary conditions make higher
refractive and absorptive characteristics of the nanocylin-
der, but this was not possible because Paulion Green’s
function is not proportional to the exciton concentration.
Although negative, this conclusion represents the main
result of our analysis.
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