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S.K. Jaćimovskid, V.D. Sajferte and V.M. Zorića
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Spectra of possible phonon states, as well as thermodynamic characteristics of nanocrystals (ultrathin film
and quantum wire) of simple cubic crystalline structure are analyzed in this paper, using the method of two-time
dependent Green functions. From energy spectra and internal energy of the system the thermal capacitance
of these structures in low temperature region is found. The temperature behavior of specific heat is compared
to that of corresponding bulk structure. It is shown that at extremely low temperatures thermal capacitance
of quantum wire is considerably lower than the thermal capacitance of film as well as the bulk sample. Con-
sequences of this fact are discussed in detail and its influence to thermodynamic properties of materials is estimated.
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1. Introduction

Crystalline films are confined crystalline structures
[1–3] in which translational symmetry is broken along
direction perpendicular to the film (z-direction, Fig. 1a).
Calculation of thermodynamic characteristics of phonons
in film structures was presented in a previous YUCO-
MAT conference [4]. Now we have calculated phonon
contribution in thermodynamic characteristics of quan-
tum wires and compared these results with previous ones
in ultrathin film structures.

Quantum wires are confined crystalline structures too,
but in which conditions on boundary surfaces differ from
those inside the wires, i.e. translational symmetry is bro-
ken along directions perpendicular to the wire (z and y
directions, Fig. 1b). Providing that there is no distur-
bance of the crystalline structure inside the wire (between
its boundary surfaces), we assume that quantum wire is
ideal. On the contrary, if there are impurities, vacancies
and the like in the crystalline lattice, quantum wire is
deformed. The scope of our study in this paper is the
ideal quantum wire of simple cubic crystalline structure
consisting of identical atoms, made on the substrate with
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the use of some appropriate technological process (depo-
sition, sputtering, etc.), whose basic crystallographic pa-
rameters — in the nearest neighbors approximation —
are [5–7]:

ax = ay = az ≡ a, Nx ∼ 108 À Ny,z ∼ 10,

Cα,α
n,m = Cα

n,n±λ ≡ Cα
nx,ny,nz ;nx±1,ny,nz

=

Cα
nx,ny,nz ;nx,ny±1,nz

=

Cα
nx,ny,nz ;nx,ny,nz±1 ≡ Cα,

Cα
ny,0;ny,−1 = Cα

ny,−1;ny,0 = (1 + ε)Cα,

Cα
ny,Nz ;ny,Nz+1 = Cα

ny,Nz+1;ny,Nz
= (1 + γ) Cα,

Cα
0,nz ;−1,nz

= Cα
−1,nz ;0,nz

= (1 + σ)Cα,

Cα
Ny,nz ;Ny+1,nz

= Cα
Ny+1,nz ;Ny,nz

= (1 + φ)Cα,

ε, γ, σ, φ ≥ −1,

where a is the lattice constant, Nx,y,z are the numbers of
atoms along x, y and z directions, Cα is the strain Hooke
elastic constant in direction α, ny,z ∈ (0, 1, 2, . . . , Ny,z)
is the atom site counter along y and z directions; vector
λ associates atom in place n with its nearest neighbors.

Respecting above facts, we are able to say the following
about the described model structure:

(778)
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Fig. 1. Cross-section of the model of ultrathin film (a)
and quantum wire (b).

1. Quantum wires have four boundary surfaces: two
of them are parallel to the XY planes (for z = 0 and
z = Lz = Nza), and two are parallel to XZ planes
(for y = 0 and y = Ly = Nya), thus, these struc-
tures are confined along y and z directions, while
unbound along x direction. Along y-axis there are
Ny + 1 atoms, and along z-axis Nz + 1 atoms.

2. Torsion Hooke’s elastic constants Cαβ are negligi-
ble relative to the strain constants Cα. It is con-
sidered that there is an interaction between atoms
in boundary layers of the quantum wire and ex-
ternal areas, disregarding that along y and z di-
rections there are no atoms of quantum wire; how-
ever, boundary atoms are coupled through changed
Hooke’s forces with the atoms of external environ-
ment. In accordance with these conditions, elas-
tic constants which describe interaction between
atoms of boundary surfaces and external environ-
ment are modified with appropriate coefficients ε
and γ, σ and φ. These perturbations of boundary
surfaces do not disturb the macroscopic geometry
of the structure, but only redefine small atom move-
ments.

With respect to described model and regarding the
fact that layers with ny ≤ −1 and ny ≥ Ny + 1, and also

nz ≤ −1 and nz ≥ Nz + 1 are not present, we have to
take into account the following:

uα;nxnynz = 0 − 1 ≥ ny,z ∧ ny,z ≥ Ny,z + 1,

ny,z /∈ [0, Ny,z] .

2. Theoretical analysis

Starting point of our theoretical approach is the stan-
dard Hamiltonian of the phonon subsystem for bulk
structures [5–8], written in the harmonic as well as in the
nearest neighbor approximations, which is adapted to the
model-structure of quantum wire presented in Fig. 1b:

H = T + Veff , T =
∑
α;n

p2
α;n

2M
,

Veff =
∑

α;nx,ny,nz

Cα

4
[(

uα;nx+1,ny,nz
− uα;nx,ny,nz

)2

+
(
uα;nx−1,ny,nz − uα;nx,ny,nz

)2

+
(
uα;nx,ny+1,nz

− uα;nx,ny,nz

)2

+
(
uα;nx,ny−1,nz − uα;nx,ny,nz

)2

+
(
uα;nx,ny,nz+1 − uα;nx,ny,nz

)2

+
(
uα;nx,ny,nz−1 − uα;nx,ny,nz

)2]
,

where uα;n are the small movements of atom in place
n from its equilibrium position in direction α, and pα;n

corresponding momentum. M is the mass of the atoms.
We are looking for the phonon dispersion law with the

help of the phonon two-time commutator Green function
[8, 9]:

Gα
n,m (t− t′) ≡ 〈〈uα;n (t)|uα;m (t′)〉〉 =

Θ (t− t′) 〈[uα;n (t) , uα;m (t′)]〉0 ,

which satisfies the equation of motion

−Mω2Gα
n,m(ω) = − i~

2π
δn,m

+
1
i~
〈〈[pα;n,H] |uα;m〉〉ω . (1)

By calculating corresponding commutators in the Green
function which appears in Eq. (1), and by using the par-
tial spatial Fourier transformation (because the transla-
tional symmetry has been disturbed along y and z direc-
tions):

Gα
nx,ny,nz ;m (ω) =

1
Nx

∑

kx

eikxa(nx−mx)Gα
ny,nz ;my,mz

(kx; ω),

δnx,mxδny,myδnz,mz =

1
Nx

∑

kx

eikxa(nx−mx)δny,myδnz,mz ,

we obtain the system of (Ny + 1) × (Nz + 1) non-



780 J.P. Šetrajčić et al.

-homogeneous algebraic-difference equations with the
same number of undetermined Green’s functions [5–7]:

Gα
ny−1,nz

+ Gα
ny,nz

+ ρα
kGα

ny,nz
+ Gα

ny,nz+1

+ Gα
ny+1,nz

= Kny,nz
, (2)

where
Gα

ny,nz
≡ Gα

ny,nz ;my,mz
(kx; ω) ,

Kny,nz
=

i~
2πCα

δny,nz ;my,mz
,

ρα
k =

ω2

Ω2
α

− 4
(

1 + sin2 akx

2

)
, Ω2

α = Cα/M.

In order to find the spectra of the allowed phonon en-
ergies amounts, we must determine the roots of the de-
terminant of the system of Eqs. (2). This task in general
is not analytically solvable (it can be solved numerically
with given parameters ε, γ, σ, φ,Ny and Nz). Hereafter,
we will give our attention to the model of the loose sur-
faces [1, 2], when surface perturbations are negligible,
i.e. ε = φ = γ = σ = 0. Undetermined Green’s functions
from Eq. (2) can be expressed as follows:

Gny,nz =
Dny,nz

DNy+1,Nz+1
,

where Dny,nz is the determinant of the variable and
DNy+1,Nz+1 the two-dimensional determinant of the sys-
tem. Poles of Green’s functions by which the phonon
dispersion law is determined can be obtained on condi-
tion that the determinant of the system is equal to zero:
DNy+1,Nz+1 ≡ 0.

Determinant DNy+1,Nz+1 can be expressed through
Chebyshev’s polynomials of second order, by which the
phonon dispersion law can be obtained in the form

εα
k = 2

√
sin2 akx

2
+ sin2 aky (µ)

2
+ sin2 akz (ν)

2
,

µ = 1, 2, . . . Ny + 1, ν = 1, 2, . . . Nz + 1,

similar to that of the bulk structures. Main difference
is, however, that phonon quasi-momentum in quantum
wires takes discrete values in y and z directions and is
continual in x direction. It can also be seen that mini-
mum phonon energy in quantum wires differs from zero,
and is given by

∆min = εα
kmin

= εα
kx=0,ky,z=kmin

y,z
=

2

√
sin2

akmin
y (µ)

2
+ sin2 akmin

z (ν)
2

,

kmin
y (µ) = ky (1) =

π

a

1
Ny + 2

,

kmin
z (ν) = kz (1) =

π

a

1
Nz + 2

,

while the corresponding minimum phonon frequency is

ωw
min = 2

v

a

√
sin2 π

2 (Ny + 2)
+ sin2 π

2 (Nz + 2)
6= 0.

In Fig. 2 there are graphically presented phonon spec-
tra in ultrathin film (a): ε = εν

(
X2 + Y 2

)
, where

X ≡ sin (akx/2) and Y ≡ sin (aky/2), for ν = 4
(from [6]) and quantum wires (b): ε = εµ,ν

(
X2

)
, where

X ≡ sin (akx/2), for µ = 5 and ν = 4. Broken lines rep-
resent continual zone of allowed phonon energy in bulk
structures. Energy gaps and energy discreteness, which
are sole consequences of existence of spatial boundaries,
are observable.

Fig. 2. Phonon spectra in ultrathin films (a) and in
quantum wires (b).

3. Thermodynamics of quantum wires

In order to determine thermodynamic properties of
quantum wires it is necessary to find corresponding val-
ues for the Debye wave vector and the Debye frequency.
We assume that phonon wave vectors of quantum wire lie
in sphere of radius kw

D. Since translational symmetry of
quantum wire is broken along y and z directions, possible
values of wave vector along x, y, and z directions are

kx ∈
[
−π

a
,+

π

a

]
⇒ ∆kx =

2π

a
,

ky/z ∈
[

1
Ny/z + 2

π

a
,
Ny/z + 1
Ny/z + 2

π

a

]
⇒ ∆ky/z =

Ny/z

Ny/z + 2
π

a

and we obtain
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V =

{
4π (akw

D)3/3
a3∆kx∆ky∆kz

⇒ kw
D =

3

√
3π2

2a3
3

√
Ny

Ny + 2
3

√
Nz

Nz + 2
=

kb
D

3

√
Ny

2 (Ny + 2)
Nz

2 (Nz + 2)
,

where kb
D = 3

√
6π2/a is the Debye wave vector in corre-

sponding unbound (bulk) structure. For the number of
allowed values of k per volume unit of k-space, next ad-
justed expression is applicable

Dw(ω) =
3NxNw

z Nw
z a3

(2π)3

∫ π

0

sin ϑdϑ

∫ 2π

0

dφ

×
∫ kD

0

k2dkδ (ω − υk) =
NxNw

z Nw
z a3

2π2

ω2

υ3
,

and by applying the normalization condition (according
to fact that the total number of phonon states is equal
to the number of atoms):

∫ ωw
D

0

Dw(ω)dω = N ⇒ NxNw
z Nw

z a3

2π2

ω2

υ3

×
∫ ωw

D

0

ω2dω = Nx

(
Nw

y + 1
)
(Nw

z + 1) ,

we obtain an expression for the Debye frequency in quan-
tum wire in the form

ωw
D = ωb

D
3

√
Nw

y + 1
Nw

y

Nw
z + 1
Nw

z

,

where ωb
D = kb

Dυ is the Debye frequency in corresponding
bulk structure. It can be seen that the Debye frequency
has somewhat greater value in quantum wire than in un-
bound structure.

Internal energy of quantum wire is calculated in terms
of standard form

Uw =
∫ ωw

D

0

dωwDw(ω) 〈n (ωw, T )〉 ~ωw =

∫ ωw
D

0

dωw
ω2

w V

2π2υ3

(
~ωw

e
~ωw
kBT − 1

)
=

9NwkBT

(
T

T b
D

)3 ∫ xw
D

0

dxw
(xw)3

exw − 1
,

where V = Nwa3, Nw ≡ Nx

(
Nw

y + 1
)
(Nw

z + 1),
xw = ~ωw

kBT and xw
D = ~ωw

D
kBT = T w

D
T .

In low temperature region, when xw
D → ∞, the last

expression becomes

Uw = 9NwkBT

(
T

T b
D

)3 ∫ ∞

0

dxw
(xw)3

exw − 1
=

3π4

5
NwkBT

(
T

T b
D

)3

.

To find the expression for the thermal capacitance per
unit cell (here: per atom), the standard definitional form
is used: C∗w = 1

Nw

∂Uw

∂T . In accordance with that we ob-
tain

C∗w =
12
5

π4kBτ3
w,

where τw = T/T b
D. It is well known that the phonon part

in thermal capacitance of the system is described with
cubic temperature dependence. For comparison of these
dependences for bulk structure and quantum wire, the
last expression is divided by the constant C0 = 12π4kB/5,
whose dimension is equal to dimension of thermal capac-
itance C ≡ C∗w

C0
= τ3

w.
In Fig. 3 there are shown relative (non-dimensional)

thermal capacitances of bulk structure, ultrathin film
(Nz = 3) and quantum wire (Ny = Nz = 3) subject to
the relative temperature τ . It can be seen that in low-
-temperature region thermal capacitance of wire is lower
than that of film, and thermal capacitance of film is lower
than that of massive specimens. It is also noticeable that
with increase in number of layers thermal capacitance of
film and wires tends toward that of bulk structure.

Fig. 3. Low-temperature behavior of thermal capaci-
tance for bulk and quantum wire.

4. Discussion

Since phonons with the Debye frequencies are responsi-
ble for electrically and thermally induced transport prop-
erties of material [8–10], it follows that the quantum wire
will be inferior electrical and thermic conductor in con-
trast with the relative massive structures, providing there
are no chemical and structural differences between them.
On the other hand, it is well known fact that the more
inferior electrical conductor material is (under normal
conditions), the better superconductor it becomes [1–3,
11–13]. Due to that, the experimental fact can be con-
cluded and justified, that in spatially very confined struc-
tures more qualitative superconductive properties have
been achieved.
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These facts point out that the key role in high TC

superconductors has the low dimension of the observed
structure. The more detailed answer to this question will
be obtained by examination of the electronic subsystem
in quantum wires.
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