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Abstract. In this paper, wireless mobile communication 
system with macrodiversity reception is considered. Mac-
rodiversity system is consisting of macrodiversity selection 
combining (SC) receiver and three microdiversity SC re-
ceivers. Propagation channel suffers α-μ short term fading 
and Gamma long term fading resulting in system perfor-
mance degradation. Analytical closed form expression for 
average level crossing rate (LCR) of macrodiversity SC 
receiver output signal envelope is obtained. Mathematical 
results are analyzed, presenting the influence of long term 
fading parameters and short term fading parameters on 
average level crossing rate. Obtained results can be used 
in the process of simulation and design of real-world envi-
ronments mobile cellular telecommunication systems. 
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1. Introduction 
The received signal in wireless communication sys-

tem experiences long term fading and short term fading 
resulting in system performance and channel capacity deg-
radation [1]. Macrodiversity system can be used to reduce, 
simultaneously, long term fading effects and short term 
fading effects on system performance. 

Several distributions can be used to describe signal 
envelope variation in fading channels [1], [2]. The α-μ 
distribution and Weibull distribution present signal enve-
lope in nonlinear and non-line-of-sight conditions in the 
presence of multipath fading. Weibull distribution refers to 
signal envelope in fading channel with one cluster and α-μ 

distribution to small scale signal envelope variation in 
nonlinear multipath fading channels with two or more 
clusters. The α-μ distribution has two parameters where 
parameter α is related to nonlinearity of propagation chan-
nel and parameter μ is related to the number of clusters in 
propagation channel. Rayleigh, Nakagami-m and Weibull 
distribution can be derived from α-μ distribution. By set-
ting α = 2, the α-μ distribution reduces to Nakagami-m and 
Weibull distribution can be obtained from the α-μ distribu-
tion by setting μ = 1. If α = 2 and μ = 1, the α-μ distribution 
approximates Rayleigh distribution [3]. 

Two distributions can depict long term fading enve-
lope power variation in shadowed fading channels:  log-
normal distribution and Gamma distribution. A closed 
solution presented in [4] shows the composite probability 
distribution of power levels derived from short term Ray-
leigh fading with superimposed long term lognormal vari-
ations of mean value, but it is not in closed form expres-
sion. The expressions for performance of wireless commu-
nication system subjected to long term fading have a closed 
form, when Gamma distribution describes signal envelope 
power variation. 

The macrodiversity system has macrodiversity re-
ceiver and two or more microdiversity receivers. Macrodi-
versity receiver reduces long term fading and microdiver-
sity receivers mitigate short term fading effects on system 
performances. In cellular mobile radio system, microdiver-
sity receivers combine signals from multiple antennas at 
a base station and macrodiversity receiver deals with sig-
nals from two or more base stations distributed in a cell [5]. 

The second order performance measures of wireless 
communication system are average level crossing rate 
(LCR) and average fade duration (AFD). Average level 
crossing rate and average fade duration are important per-
formance measures enabling dynamic analysis of wireless 
communication system. Average LCR is equal to average 
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value of the first derivation of random process and AFD 
can be calculated as a ratio of outage probability and aver-
age level crossing rate [3]. 

In open technical literature, many papers exist which 
treat first and second order statistics of wireless communi-
cation system. Outage probability in shadowed fading 
channels is evaluated in [6] when macrodiversity and mi-
crodiversity techniques are implemented. Selection com-
bining system over correlated Generalized-K (KG) fading 
channels in the presence of co-channel interference is ana-
lyzed in [7]. 

The infinite-series expressions for the second-order 
statistical measures of macro-diversity structure operating 
over Gamma shadowed κ-μ fading channels is provided in 
[8]. The authors focused on maximal ratio combining 
(MRC) at each base station (micro-diversity), and SC com-
bining, based on output signal power values, between base 
stations (macro-diversity). 

In [9], average LCR and AFD of macrodiversity 
system with macrodiversity SC receiver and two micro-
diversity SC receivers operating over Gamma shadowed 
Nakagami-m multipath fading environment are processed. 
In [10], second order performance measures of wireless 
system with macrodiversity reception in the presence of 
Gamma shadowing and Rician multipath fading are 
studied. 

In this paper, the macrodiversity system with SC re-
ceiver and three microdiversity SC receivers which operate 
over Gamma shadowed α-μ multipath fading channel is 
discussed. The closed form expression for average level 
crossing rate is derived. The second order statistics of 
macrodiversity system in Gamma shadowed α-μ fading 
channel is not presented in available technical literature till 
now, according to the authors' knowledge. 

2. Level Crossing Rate of α-μ Random 
Process 
The α-μ random variable is given by dint of [11]: 
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where r is Nakagami-m random variable. 

The first derivative of the α-μ random variable is 
introduced by: 
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where ṙ is the first derivative of the Nakagami-m random 
variable. The joint probability density function of α-μ ran-
dom variable and its first derivative is calculated by the 
next equation: 

    
1 1 1 1r r rrp r r J p rr     (3) 

where Jacobian is given by means: 
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The joint probability density function of Nakagami-m 
random variable r and its first derivative ṙ is performed by: 
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where β2 = π2fm
2Ω/m, fm is maximal Doppler frequency, m 

is shape parameter and Ω is power of  Nakagami-m random 
variable r. 

After substituting (4) and (5) in (3), the expression for 
the joint probability density function becomes: 
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Level crossing rate of α-μ random process can be 
calculated as the first derivative of α-μ random process: 
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Γ( · )denotes the Gamma function. 

The SC receiver processing over independent 
indentical α-μ multipath channel is analyzed. Signal 
envelopes at inputs of SC receiver are denoted with x1 and 
x2, and SC receiver output signal envelope is x. 

The joint probability density function of SC receiver 
output signal and its first derivative is performed by: 
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where Fx2
(x) is cumulative distribution function of α-μ 

random variable shown by  

    2
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with γ(·) representing the lower incomplete Gamma 
function described by: 
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where 1F1 is the Kummer confluent hypergeometric 
function [12]. 

Average level crossing rate of SC receiver output 
signal envelope can be calculated using the formula:  
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where Nx1 is displayed with (7). 

Cumulative distribution function of SC receiver 
output signal is described by: 

       
1 2 2

2
F F F Fx x x xx x x    (12) 

where Fx2
(x) is cumulative distribution function of α-μ 

random variable shown by (9). 

3. Average Level Crossing Rate of 
Macrodiversity SC Receiver Output 
Signal  
Macrodiversity system SC receiver with three micro-

diversity SC receivers is considered. The system that is 
being considered is shown in Fig. 1. Received signal is 
subjected to correlated Gamma long term fading and α-μ 
short term fading. Signal envelopes at inputs of the first 
microdiversity SC receiver are denoted with x1 and x2, at 
inputs of the second microdiversity SC receiver with y1 and 
y2, and the inputs of the third microdiversity receiver with 
z1 and z2. Signal envelopes at output of microdiversity SC 
receivers are denoted with x, y and z, and output of macro-
diversity SC receiver with w. The average powers of signal 
envelope at inputs of microdiversity SC receivers are 
denoted with Ω1, Ω2 and Ω3. 

Random variables Ω1, Ω2 and Ω3 follow Gamma 
distribution and they may be presented by: 
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where In(·) is modified Bessel function of the first kind, 
order n and argument x, Ω0 is mean square of signal power 
variation, ρ correlation coefficient, and c Gamma shadow-
ing severity. 

 
Fig. 1. Macrodiversity system with three microdiversity SC 

receivers. 

Macrodiversity SC receiver selects microdiversity SC 
receiver with the highest signal envelope power at inputs to 
provide service to user. Therefore, average level crossing 
rate of macrodiversity SC receiver output signal envelope 
can be calculated using: 
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where 
1 1/xN  and 

2 2/xN  are given with (11) and 

 
1 2 3 1 2 3p      is given by (13). 

Integral I1 is equal to: 

 
1 1

1 1 2 31 1 2 3 / 1 2 3

0 0 0

d d d xI N p
 

              

 

1 1

1

1

2
2

1 2 3 2
10 0 0

2 2
d d d e

w
mf w

  


    
       

    

   2 1 2
1 0

1
,

1 c c
w

c
 

   

 
     
 

   

   

1

1

2

2

2 1

0 0 1 1

2 1

0 0 2 2

1

1 !

1

1 !

i c

i

i c

i

i i c

i i c







 




 




 
 

    

 
     





 

 
 

1 3 2

01 1 2 2

1

11 1 1
1 2 3 ei c i i c i c




   


           ,  (15) 



760 D. KRSTIC, B. JAKSIC, M. GLIGORIJEVIC, ET AL., PERFORMANCE OF DIVERSITY SYSTEM OUTPUT SIGNAL … 

 

or 

    
1

2 2
1 2 2 1 2

0

2 2 1

1
m

c c

f
I w

c

  
 

 

 
 

  
 

     

1 2

1 2

2 1 2 1

0 00 1 1 0

1

1 ! 1

i c i c

i ii i c

 
 

   
 

 

   
   

        
   

 
1 1

1
1 2

1 1 1
2 2 10

1
d , e

!

w
i c w

i i c


  

     
        
  

 
 
   

2 31 1 1

0 0 01 2 2

1

1 1 11 1
2 2 3 3

0 0

e d e d ei i c i c


  

      
                 (16) 

After using [12] for resolving the second and third 
integrals in (16), I1 becomes: 
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with γ(·) defined in (10). 

After developing Gamma function, I1 is obtained in 
a form: 
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By using [12], it is obtained: 
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where Kn(x) is modified Bessel function of the second 
kind, order n and argument x [12]. 

Integral I2 is equal to: 
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After using the procedure for solving I1 and I2, the 
integral I2 is obtained in a form given in the next equation: 
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4. Numerical Results 
In Fig. 2, the normalized level crossing rate of macro-

diversity SC receiver output signal envelope is plotted 
versus macrodiversity SC receiver output signal envelope 
w, for different values of number of clusters μ and nonline-
arity parameter α.  

One can see from this figure that an increase of output 
signal envelope w first leads to the increasing of the aver-
age level crossing rate. After reaching the maximum, this 
leads to rapid decline of average level crossing rate. With 
bigger values of nonlinearity coefficient α and number of 
clusters µ, LCR is declining.  

In Fig. 3, the normalized level crossing rate of macro-
diversity SC receiver output signal envelope is plotted 
versus correlation coefficient ρ, for different values of 
Gamma fading severity c. The other parameters values are: 
nonlinearity parameter α = 0.5, number of clusters μ = 2, 
power Ω1 = 1 and normalized output signal envelope w = 1. 
When the correlation coefficient increases, then the aver-
age level crossing rate increases. On the contrary, with 
increasing of Gamma shadowing severity c, the average 
level crossing rate is getting smaller.  

It is necessary to choose such system parameters to 
achieve smaller values of average level crossing rate, be-
cause the system performances are better in that case. 

5. Conclusion 
Macrodiversity system including SC macrodiversity 

receiver and three microdiversity SC receivers working 
over shadowed multipath fading channel is analyzed. The 
received signal experiences correlated Gamma large scale 
fading and α-μ small scale fading. Macrodiversity SC re-
ceiver reduces Gamma long term fading effects and micro-
diversity SC receivers mitigate α-μ short term fading ef-
fects on level crossing rate. The α-μ fading channel is gen-
eral fading channel. When μ goes to 1, Gamma shadowed 
α-μ multipath channel becomes Gamma shadowed Weibull 
channel. When parameter α is 2 and parameter μ is 1, 
Gamma shadowed α-μ multipath channel becomes Gamma 
shadowed Rayleigh multipath channel. In this paper, aver-
age level crossing rate of macrodiversity SC receiver out-
put signal envelope is calculated. Obtained expression 
converges for any values of Gamma severity parameter. 
For  μ = 1,  the obtained expression becomes the expression 
for average level crossing rate of macrodiversity system in 
the presence of Weibull fading. 

 
Fig. 2. Level crossing rate of macrodiversity SC receiver 

output signal envelope for different values of number 
of clusters μ and nonlinearity parameter α. 

 
Fig. 3. Level crossing rate of macrodiversity SC receiver 

output signal envelope versus correlation coefficient ρ. 

Numerical results are presented graphically to illus-
trate the influence of shadowing severity, multipath sever-
ity and correlation of shadowing on average level crossing 
rate. The system performance is better for lower values of 
average level crossing rate of output signal envelope. 
Average level crossing rate increases as Gamma long term 
fading severity and α-μ short term fading severity de-
creases. When correlation coefficient goes to 1, macrodi-
versity system becomes microdiversity system. In this case, 
the same signal occurs at all three base stations. 
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