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 The adapted Green's functions were used to calculate phonon spectra and states in 

ultrathin films.  

 Boundary conditions are included through the Hamiltonian of the film-structure. 

 The spectral weights of phonon Green’s function have been calculated. 

 The localized – surface phonon states can appear for higher values of boundary 

parameters. 

 Surface states can have a dominant role in phonon thermodynamics and transport 

processes. 
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Abstract

In this paper, we have analytically investigated how the changes in boundary

surface parameters influence the phonon dispersion law in ultrathin films of the

simple cubic crystalline structure. Spectra of possible phonon states are analysed

using the method of two-time dependent Green’s functions and for the diverse com-

bination of boundary surface parameters, this problem was presented numerically

and graphically. It turns out that for certain values and combinations of parame-

ters, displacement of dispersion branches outside of bulk zone occurs, leading to the

creation of localized phonon states. This fact is of great importance for the heat

removal, electrical conductivity and superconducting properties of ultrathin films.

Keywords: Phonons, ultrathin films, Green’s function, boundary parameters

1 Introduction

Until recently, scientists and engineers who designed and crafted devices have had a little

or nothing at all to worry about microscopic properties of materials they used. The speci-

ficities of the microscopic world have been hidden in macroscopic parameters like mobility,

conductance, diffusion coefficient etc. There was not much point to understand how these

quantities are calculated from the basic physical principles since there was nothing that
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one could do to change them. However, with the advances in fabrication techniques and

miniaturization of devices situation changed drastically: it became possible to control

these parameters by engineering devices on the microscopic, or even on nanoscopic scale.

Understanding of the basic physical properties of nanostructures is the first step to-

wards their implementation. As a result of numerous factors, nanostructures are char-

acterized by a range of different qualities: superconductivity, transport, heat insulating,

acoustic and other. Most of these factors are associated with the existence of the bound-

aries of the structure. The main goal in this paper was to examine how the changes in

boundary surface parameters influence the phonon dispersion law in ultrathin films of the

simple cubic crystalline structure, which makes the basis for the concept of phonon engi-

neering (nanophononics) [1–5]. The great importance of phonons consists in that without

them, it is almost impossible to examine and describe the acoustical characteristics, as

well as thermodynamic, conductive and superconductive properties of solids. In recent

years thermal properties of nanostructures have attracted a lot of attention. The influence

of size effects on thermal conductivity is becoming extremely important for heat removal

and device design and reliability. It is also predicted that the use of nanostructured com-

ponents may increase the sensitivity of measuring instruments, which in turn leads to new

experimental results.

The subject of such fundamental research is not new due to the important role of

phonons in transport processes in condensed systems. Apart from our team, many other

research teams [1–3,6–8] have been engaged in this. In this respect, particular emphasis

should be given to the research carried out in order to examine the influence of the phonon

subsystem on the properties of the graphene, epitaxially grown on metals and transition

carbides, which is mandatory in order to tailor graphenes mechanical properties [9–13]. We

have recently published the results of the research of phonon diffusion through ultrathin

crystal films [14], where we had to use the phonon dispersion law. Due to complications

with analytic, we decided to consider only ”ideal” film structures. In the continuation of

our research, the problem of finding phonon spectra in ultrathin crystal films with different

boundary conditions was solved by another approach, and now we are presenting it here.

In addition, we have justifiably sought and answered the question of why phonon states

are not evenly distributed; in fact, even localized – surface states may arise.
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2 Phonons in bulk crystalline samples

The Hamiltonian of phonons in crystalline structures is obtained by developing the po-

tential energy of crystals by small atomic displacements from the equilibrium position ~u~n,

where ~n is the vector of the crystal lattice, ~n = nx~ax + ny~ay + nz~az . Here only crystals

with simplest possible crystalline structure – simple cubic, with one atom per elementary

cell will be observed. Although this fact may seem like a major constraint in terms of

the applicability of the described model, this is not the case; namely, according to the

method of achievement statistical and dynamical equivalence between rectangular and

structures with lower symmetry [5], the field of its practical application is far wider. For

example, in the case of monoclinic structures, the method of equivalence is applicable

with no reservations. Hamiltonian of phonon subsystem in these structures, presented in

nearest neighbor approximation, can be written in the form [15,16]:

H =
∑

α;~n

p2α;~n
2M

+
∑

α;nx,ny,nz

Cα

4

[(
uα;nx+1,ny,nz − uα;nx,ny,nz

)2
+

+
(
uα;nx−1,ny,nz − uα;nx,ny,nz

)2
+

(
uα;nx,ny+1,nz − uα;nx,ny,nz

)2
+

+
(
uα;nx,ny−1,nz − uα;nx,ny,nz

)2
+

(
uα;nx,ny,nz+1 − uα;nx,ny,nz

)2
+ (1)

+
(
uα;nx,ny,nz−1 − uα;nx,ny,nz

)2]
.

Here, M is the mass of an atom, uα;~n are the small movements of atom in place ~n from its

equilibrium position in direction α, and ~pα;~n corresponding momentum. Hooke’s torsion

constants are disregarded in comparison to the tension constant.

In order to find the phonon dispersion law, we will make use of the phonon two-time

commutator Green’s function [17]:

G α
~n,~m(t− t′) ≡ 〈〈uα;~n(t) | uα;~m(t

′)〉〉 = Θ(t− t′) 〈[uα;~n(t), uα;~m(t
′)]〉0 (2)

and corresponding equation of motion:

−Mω2G α
~n,~m(ω) = − i~

2π
δ~n,~m +

1

i~
〈〈[pα;~n, H ] | uα;~m〉〉ω . (3)

The next step consists of calculating the commutators in Green’s function from equation

(3). By applying the spatial Fourier-transformation (~n, ~m → ~k):

G α
~n,~m(ω) =

1

N

∑

~k

e−i(~n−~m)~k Gα
~k
(ω) ; δ~n,~m =

1

N

∑

~k

e−i(~n−~m)~k
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after insignificant algebraic operation we get:

G α
~k
(ω) =

i~

4πM ωα(~k)

[
1

ω − ωα(~k)
− 1

ω + ωα(~k)

]
, (4)

where ωα(~k) = 2Ωα

√∑
j
sin2 aj kj

2
, j ∈ (x, y, z) and Ωα =

√
Cα/M . Here, obviously, the

poles of Green’s functions are obtained when the denominator of expression in brackets

equate zero. After solving this condition under ω ≡ ωα(~k), the phonon dispersion law is

obtained in form:

Eα(~k) ≡ ~ ωα(~k) = 2 Eα

√

sin2 axkx
2

+ sin2 ayky
2

+ sin2 azkz
2

, (5)

where Eα = ~Ωα = ~
√
Cα/M . To compare this equation with that for ultrathin film

structures, it is convenient to rewrite it in form:

Eα(~k) ≡
Eα(~k)

Eα
= 2

√
F(kxky) + G(kz) , (6)

or, more simply:

Exyz = 2
√
Fxy + Gz , (7)

where:

Fxy ≡ F(kxky) = sin2 axkx
2

+ sin2 ayky
2

; Gz ≡ G(kz) = sin2 azkz
2

.
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Figure 1: Phonon dispersion law for bulk structure

Figure 1 shows dependence of the square on the relative phonon energy E2
xyz in terms of

the two-dimensional function Fxy with parametric function Gz for the first Brillouin zone
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of the bulk structures. The dotted lines indicate the boundaries of the bulk zone. It can

be seen that within the permissible energy zone, there are as many possible energy states

as the elementary particles that make up the crystal lattice. Inside a cubic crystalline

sample with volume of 1cm3, there are 108 × 108 × 108 = 1024 atoms/molecules, so the

number of possible energy states is also 1024. All these energies are equally probable and

their spatial distribution in the crystal is even. This is an understandable consequence of

the absence of boundary conditions and deformities of the structure.

3 Formation of phonon model in ultrathin film

Ultrathin crystalline films [18–20] are crystalline structures with broken translational sym-

metry along direction perpendicular to the plane of film (z in our model on Fig.2), in which

conditions on boundaries are different from those inside the structure.

X/Y

Z

nz =0

nz =1

nz = 1–

n Nz = 1z
–

n Nz = z

n Nz = z+1

C

C

C

C

(1+ )ε C

(1+ )γ C

SUBSTRATUM

ENVIRONMENT

L
...

...
...

Figure 2: Ultrathin crystalline film model structure

Considering that there are no disturbances of the crystalline structure between the

boundary surfaces of the film, we assume it ideal. Otherwise, if there are impurities,

vacancies etc, the ultrathin film is deformed. The subject of our research in this paper is

the ideal ultrathin film of simple cubic crystalline structure (see remark in first paragraph

of the Section 2), whose basic crystallographic parameters are:
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ax = ay = az = a ; Nx,y ∼ 108 ≫ Nz ∼ 10 ;

Cα,β
~n,~m = Cα,α

~n,~m = Cα
~n,~n±λ = C~n,~n±λ = Cnz ,nz±1 ;

CNz ,Nz+1 = CNz+1,Nz = (1 + γ)C , C−1,0 = C0,−1 = (1 + ε)C ; ε, γ ∈ [−1,+2, 5] ,

where a is the lattice constant, Nx/y/z are the numbers of atoms along x, y and z−directions,

Cα−Hooke’s elastic constants and nz ∈ (0, 1, 2, · · · , Nz) is the atom site counter along z

direction. Considering the nature of elastic force, values of boundary parameters ε, γ < −1

are physically meaningless. On the other hand, their upper values can be arbitrary chosen,

but in this research, we selected value +2, 5 as the upper limit.

Based on the above mentioned, we can conclude the following about described model

structure:

1. Carrier movement in ultrathin film is confined along z direction, while unbounded

along x and y directions. That means that film structure under consideration have

two boundary surfaces parallel to the XY planes (for z = 0 and z = Lz = Nza).

Along z−axis there are Nz + 1 atoms.

2. Torsion Hooke’s elastic constants Cαβ have much lower values than the straining

constants Cα so that they can be ignored.

3. Despite the fact that there are no atoms belonging to the film above the upper and

below the lower boundary surface of the film, we assume that interaction between

boundary layers and atoms of external environment nevertheless exists through

changed Hooke’s forces [21–27]. Elastic constants which describe these interactions

are modified with appropriate coefficients ε and γ (boundary parameters).

With respect to all these conditions and also regarding the fact that layers with nz ≤ −1

and nz ≥ Nz + 1 don’t exist, we have to take into account the following:

uα;nx,ny,j = 0 ; −1 ≥ j ∧ j ≥ Nz + 1 ; (j 6∈ [0, Nz]) ,

C−1 = (1 + ε) C ; CNz+1 = (1 + γ) C .
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4 Phonon states in ultrathin film

Our theoretical analysis starts from the standard form of the phonon subsystem Hamilto-

nian for bulk structures (1), written in the harmonic and nearest neighbors approximations

and adapted to the ultrathin film model structure presented on Fig. 2:

H =
∑

α;~n

p2α;~n
2M

+
∑

α;nx,ny

Nz+1∑

nz=−1

Cα

4

[(
uα;nx+1,ny,nz − uα;nx,ny,nz

)2
+

+
(
uα;nx−1,ny,nz − uα;nx,ny,nz

)2
+

(
uα;nx,ny+1,nz − uα;nx,ny,nz

)2
+

+
(
uα;nx,ny−1,nz − uα;nx,ny,nz

)2
+

(
uα;nx,ny,nz+1 − uα;nx,ny,nz

)2
+ (8)

+
(
uα;nx,ny,nz−1 − uα;nx,ny,nz

)2]
.

Following the same procedure described in the previous section and by applying the partial

spatial Fourier-transformation along z−direction, where the translational symmetry has

been disrupted:

G α
nx,ny,nz ;mx,my,mz

≡ G α
~n,~m(ω) =

1

N

∑

kx,ky

e−ia[(nx−mx)kx+(ny−my)ky ] G α
nz ,mz

(kx, ky;ω) (9)

we get the system of (Nz + 1) nonhomogeneous algebraic-difference equations with the

same number of undetermined Green’s functions [13–25]:

Gα
nz−1,mz

+ ̺α
~k
Gα

nz ,mz
+ Gα

nz+1,mz
= Knz , (10)

where:

̺α
~k
=

ω2

Ω2
α

− 4 sin2 akx
2

− 4 sin2 aky
2

− 2 ≡ ̺ ; (11)

Gα
nz,mz

≡ G α
nz,mz

(kxky;ω) ; Ω2
α =

Cα

M
; Knz =

i~
2πCα

δnzmz .

The system of equations (10) can be represented in the form of the determinant:

DNz+1(̺ ; ε, γ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

̺− ε 1 0 0 · · · 0 0 0 0
1 ̺ 1 0 · · · 0 0 0 0
0 1 ̺ 1 · · · 0 0 0 0

· · · · . . . · · · ·
0 0 0 0 · · · 1 ̺ 1 0
0 0 0 0 · · · 0 1 ̺ 1
0 0 0 0 · · · 0 0 1 ̺− γ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Nz+1

, (12)

which can be expressed through characteristic Chebyshev’s polynomials of order Nz:

DNz+1(̺ ; ε, γ) = (̺− ε)(̺− γ) PNz−1(̺)− (2 ̺− ε− γ) PNz−2(̺) + PNz−3(̺) =

= PNz+1(̺)− (ε+ γ) PNz(̺) + εγ PNz−1(̺) . (13)
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In order to find the spectra of the possible phonon energies, we need to determine the

zeroes of the determinant (12), i.e. to solve the equality:

DNz+1(̺ ; ε, γ) = 0 . (14)

In that manner, we get the dispersion law of phonons in form:

Eα
~k
= 2

√

sin2 akx
2

+ sin2 aky
2

+ sin2 akz(ν)

2
(15)

(ν = 1, 2, . . . , Nz + 1), which is almost exactly the same as the one for bulk structures (5).

The difference between the two equations is, however, that quasimomentum of phonons

in ultrathin films can take only discrete values in z direction, and is continual in x and

y directions. The main consequence of this fact is that the phonons in ultrathin films

possess upper and lower energy gaps, i.e. zone of allowed phonon energies in ultrathin

films is narrower than that in bulk samples for the value of the sum of these gaps.

By applying the well-known trigonometric identity:

sin2 α =
1

2
(1− cos 2α)

relation (11) can be rewritten in the following form:

̺ =
ω2

Ω2
α

− 6 + 2 (cos akx + cos aky) . (16)

By introducing the labels:

ω2

Ω2
α

− 6 ≡ E2
ν and 2 (cos akx + cos aky) ≡ Fxy ,

from the equation (16) we get

̺ = E2
ν + Fxy . (17)

Figures 3a and 3b shows dependance E2
ν = E2

ν (Fxy) with parametric function Gν for dif-

ferent values of boundary parameters ε and γ for the five-layer perturbed film. Numerical

calculations were carried out with the help of the program that has been created by au-

thors, based on a commercial software package ”Wolfram Mathematicar”. It can be seen

that negative values of boundary parameters ε and γ reduce the energy gaps, or spread

the energy zone towards bulk values. On the other hand, for positive values of parameters,

energy spectra is shifted towards higher energies, which means that energy gap increases,

i.e. the highest energy levels are close to the upper limit of the bulk zone. Starting from
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parameter values of γ = +1, 222 and ε = −1 or vice versa, one localized phonon energy

state appears, together with an increase in lower energy gap. Second localized phonon

state arises approximately at γ/ε = +1, 3000 and ε/γ = +2, 5000.
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Figure 3a: Phonon dispersion law for the five-layer perturbed film with different values

of boundary parameters ε and γ
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Figure 3b: Phonon dispersion law for the five-layer perturbed film with different values

of boundary parameters ε and γ

For a clearer overview of the critical values of boundary parameters that determine

areas with zero, one or two localized states, Figure 4 is presented.
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Figure 4: A graphical representation of the critical values of the boundary parameters

that determine areas with zero, one or two localized states

From the obtained results, it is not possible to determine the probability of occurrence

of individual phonon states (which is especially important for those physically most inter-

esting – localized phonon states), as well as where these states are (ie, what their spatial

distribution is). For the analysis of the spatial distribution of phonons, or the probability

of finding the phonons with a certain energy on the individual layers of the crystalline

film, it is necessary to calculate the spectral weights of individual Green’s functions.

5 Spatial distribution of phonon states

The starting point for this part of research is the system of equations for Green’s functions,

which is most appropriately presented in the matrix form [27]:

D̂N+1G̃N+1 = K̃N+1 , (18)
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where: D̂N+1− is the matrix corresponding to the determinant of the system DNz+1(̺ ; ε, γ)

(12), and G̃N+1 and K̃N+1− vectors that correspond to Green’s functions Gα
nz,mz

and Kro-

necker symbols Knz from equation (11):

G̃N+1 =




G0,mz

G1,mz

.

.

.
Gnz ,mz .

.

.
GN,mz




; K̃N+1 =
i~

2πCα




δ0,mz

δ1,mz

.

.

.
δnz,mz .

.

.
δN,mz




.

By utilizing the matrix inverse to D̂N+1 from the left hand side on equation (18), we get:

G̃N+1 = D̂−1
N+1 K̃N+1 . (19)

Considering that the inverse matrix D̂−1
N+1 can be represented by an adjugated matrix

whose elements Dik are the cofactors of elements dik of the direct matrix [17,18], it follows

(DNz+1(̺ ; ε, γ) ≡ DNz+1):

Gnz,mz =
1

DNz+1

∑

q

Dnz,qKq,mz =
1

DNz+1

i~
2πCα

∑

q

Dnz,qδq,mz =
i~

2πCα

Dnz ,mz

DNz+1

. (20)

Cofactors Dnz,mz can be calculated from the determinant of the system (12).

Since for the equilibrium processes in the system only the diagonal Green’s functions

Gnz ;nz ≡ Gnz are important, the calculation of the cofactors Dnz ,mz ≡ Dnz is considerably

simplified. It turns out that they are equal to the product of two auxiliary determinants:

Dnz = BnzBN−nz , (21)

where: B0 = BN−N = 1,

Bnz(̺) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

̺− ε 1 0 · · · 0 0 0
1 ̺ 1 · · · 0 0 0
0 1 ̺ · · · 0 0 0

· · · . . . · · ·

0 0 0 · · · ̺ 1 0
0 0 0 · · · 1 ̺ 1
0 0 0 · · · 0 1 ̺

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
nz

, (22)
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BN−nz(̺) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

̺ 1 0 · · · 0 0 0
1 ̺ 1 · · · 0 0 0
0 1 ̺ · · · 0 0 0

· · · . . . · · ·

0 0 0 · · · ̺ 1 0
0 0 0 · · · 1 ̺ 1
0 0 0 · · · 0 1 ̺− γ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
N−nz

. (23)

In general, the values of the auxiliary determinants can be calculated numerically, while

the Green’s functions of the perturbed ultrathin film are [28]:

Gnz =
i~

2πCα

BnzBN−nz

DNz+1

. (24)

Since Green’s functions have multiple poles (because in denominator exists polynomial

DNz+1 of order Nz + 1), it is necessary to carry out the process of factorization in simple

poles:

Gnz =
i~

2πCα

N+1∑

ν=1

gnz;nz(̺ν)

̺− ̺ν
. (25)

Spectral weights gnz;nz(̺ν) ≡ gνnz
of phonon Green’s function then can be expressed in

form:

gνnz
=

Bnz(̺ν)BN−nz(̺ν)

d

d̺
DNz+1(̺)

∣∣∣∣∣
̺=̺(ν)

. (26)

The spectral weights of Green’s function give the probability distribution of finding

phonons with certain energy on the individual layers of the crystalline film. In the tables

1 and 2 and on the figures 5a and 5b, the values of the reduced phonon energies and

corresponding spectral functions (spatial distribution of probabilities) in the five-layer

perturbed film are presented. As with the determination of phonon states, the spectral

weights for the given phonon energies are calculated numerically. It should be noted that

only characteristic examples are selected and shown here. The figures show the spatial

distribution of the probability of finding phonons with the corresponding energies on the

individual layers of the crystalline film, while in the bottom line, summarized graphics

for all energy distributions are shown. Energies with values located outside the bulk zone

(localized phonon states), as well as the highest probability values per film layers, are

highlighted in tables.
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Reduced
relative

ε = −1, 0; γ = −1, 0

ENERGY 0. plane 1. plane 2. plane 3. plane 4. plane

4,00000 0,16552 0,22174 0,22548 0,22174 0,16552
4,38197 0,16904 0,21971 0,22250 0,21971 0,16904
5,38197 0,17551 0,21585 0,21729 0,21585 0,17551
6,61803 0,18050 0,21275 0,21350 0,21275 0,18050
7,61803 0,18325 0,21100 0,21149 0,21100 0,18325

Reduced
relative

ε = −1, 0; γ = 0, 0

ENERGY 0. plane 1. plane 2. plane 3. plane 4. plane

4,08101 0,15891 0,21140 0,21494 0,21424 0,20051
4,69028 0,16473 0,20986 0,21210 0,21171 0,20161
5,71537 0,17142 0,20799 0,20918 0,20900 0,20240
6,83083 0,17627 0,20660 0,20728 0,20719 0,20265
7,68251 0,17897 0,20582 0,20629 0,20624 0,20268

Reduced
relative

ε = 0, 0; γ = +2, 0

ENERGY 0. plane 1. plane 2. plane 3. plane 4. plane

4,33760 0,16133 0,17099 0,17205 0,18016 0,31547
5,24263 0,17232 0,17910 0,17952 0,18354 0,28552
6,42494 0,17991 0,18450 0,18467 0,18665 0,26428
7,49592 0,18396 0,18736 0,18744 0,18863 0,25261

8,49889 0,18653 0,18919 0,18924 0,19002 0,24501

Table 1: The probabilities of phonon states in the five-layer perturbed film
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Figure 5a: A graphical representation of the probabilities of phonon states in the

five-layer perturbed film
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Reduced
relative

ε = +2, 0; γ = −1, 0

ENERGY 0. plane 1. plane 2. plane 3. plane 4. plane

4,10475 0,33897 0,18556 0,17498 0,17142 0,12907
4,88192 0,30480 0,18819 0,18275 0,18080 0,14346
6,13706 0,27564 0,19103 0,18863 0,18770 0,15699
7,37850 0,25957 0,19282 0,19153 0,19102 0,16507

8,49778 0,25007 0,19393 0,19313 0,19280 0,17007

Reduced
relative

ε = +1, 5; γ = +2, 5

ENERGY 0. plane 1. plane 2. plane 3. plane 4. plane

4,43482 0,21245 0,14861 0,14557 0,15570 0,33767
5,57165 0,21651 0,16368 0,16201 0,16626 0,29153
6,96808 0,21565 0,17287 0,17199 0,17394 0,26555

8,12420 0,21430 0,17746 0,17690 0,17807 0,25327
8,90126 0,21341 0,17974 0,17932 0,18018 0,24735

Reduced
relative

ε = +2, 5; γ = +2, 5

ENERGY 0. plane 1. plane 2. plane 3. plane 4. plane

4,45673 0,29735 0,13792 0,12946 0,13792 0,29735
5,64922 0,26920 0,15510 0,15140 0,15510 0,26920
7,10123 0,25144 0,16628 0,16456 0,16628 0,25144

8,85078 0,23939 0,17402 0,17318 0,17402 0,23939
8,94204 0,23892 0,17433 0,17351 0,17433 0,23892

Table 2: The probabilities of phonon states in the five-layer perturbed film
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Figure 5b: A graphical representation of the probabilities of phonon states in the

five-layer perturbed film
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From the two left columns in Figure 5a can be seen that the probability of finding

unlocalized phonon states is approximately uniformly distributed over all layers of the film.

This is understandable, because the boundary conditions are poorly perturbed (ε, γ ≤ 1).

On the right column of Figure 5a and from the first column of Figure 5b, the greatest

probability of locating precisely localized states is detected at one boundary level, when

the values of the parameters are in the interval 1, 2 < ε, γ ≤ 1, 5. The two right columns

of figure 5b show the appearance of two localized phonon states with equal probabilities

of appearance on both film boundaries. The probability of their appearance is greatest

at the boundary layer with a higher value of the boundary parameter. In cases where

the values of the boundary parameters are the same, the probability of appearance of the

localized phonon states is equal on both boundary layers. These are in fact surface states

that occur for ε, γ > 1, 5 and dominate in relation to the remaining bulk phonon states.

6 Conclusions

The central topic of this paper is the description of the acoustic phonons of the optical

type and phonon related effects in structures with nanoscale dimensional confinement

in one spatial dimension, namely ultrathin crystalline films. It is known that acous-

tic phonons have considerable influence on thermal, optical and electronic properties of

materials. They are heat carriers and – together with optical phonons – significantly

affect the mobility of electrons in medium and high-temperature regimes. Confinement of

phonons due to the size-reduction in nanostructures results in dimensional quantization

of phonon branches and substantial modification of their energy spectrum, group veloc-

ity, and polarization. The concept of phonon engineering is based on these changes, in

order to improve thermal and electric transport properties of the material under study.

In homogeneous layers, phonon engineering can be achieved either by changes in the size

or by changes in the exterior surfaces. Latter was the subject of this paper, where we

have simulated different exterior environments of the ultrathin film by means of changing

in Hooke’s constants through different values of the boundary parameters. The results

we have obtained are as follows.

In the five-layer film, there are five possible quantum phonon states. For the lesser

values of the boundary parameters, which describe the interaction of the film with the

substratum and the external environment, there are no localized states, but all the states
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are within the phonon bulk zone with approximately the same distribution across all

layers of the film. For higher values of boundary parameters, one (1, 2 ≤ ε, γ < 1, 5) or

two (1, 5 ≤ ε, γ ≤ 2, 5) localized states may occur. The analysis has shown that these are

the surface phonon states, with the greatest distribution probability at the very boundary

surfaces of the film (one or both). These localized states are physically particularly

interesting, because their presence certainly changes the thermodynamic behavior of the

phonon system in the ultrathin film. It is not difficult to conclude that due to the presence

of localized phonon states, the interactions of all (quasi)particles present in this structure

will have to be redefined. This means that the phonon contribution in the transport of

heat, electrical conductivity and superconducting properties should be determined.
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talline nanostructures, pp. 146-151, In: Electrical and computer engineering series,

N.E. Mastorakis, V.V. Kluev and Dj. Koruga, Eds.: Advances in simulation, sys-

tems theory and systems engineering, WSEAS Press, Singapore 2002.
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