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In this paper, we investigated the influence of size effect on thermodynamic properties of ultra-narrow wires

with a simple cubic lattice, by means of two-time dependent Green functions method, adjusted to confined crys-
talline structures. Poles of Green functions, which defining phonon spectra, are found by solving the secular
equation. For different boundary parameters, this problem is presented graphically. The temperature behavior of
ultra-narrow wire thermal capacitance is compared to that of bulk structures. It turned out that in low-temperature
region thermal capacitance of the ultra-narrow wire is notably lower than in the corresponding bulk sample. How
this fact reflects the thermal, conducting and superconducting properties of materials, is discussed in the conclu-
sion.
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1. Introduction

Over the last few decades, we have experienced a huge
improvement in the development of nanoscale devices
with physical properties that are dramatically different
from the physical characteristics of samples which are
larger in size. As a result of numerous factors, nanostruc-
tures are characterized by a range of different qualities:
superconductive, transport, heat insulating, acoustic and
other. Most of these factors are associated with the ex-
istence of the boundaries of the structure. In this pa-
per, we will try to observe how dimensional confinement
of phonons in low-dimensional structures (ultra-narrow
wires) leads to modifications in its thermodynamic prop-
erties, which makes the basis for the concept of phonon
engineering (nanophononics) [1–4]. Our primary motive
is the fact that the influence of size effects on thermal
conductivity is becoming extremely important in recent
years for heat removal and device design and reliability.
The great importance of phonons consists in that with-
out them it is almost impossible to examine and describe
the acoustical characteristics, as well as thermodynamic,
conductive and superconductive properties of solids.

Ultra-narrow wires [5–9] are crystalline structures with
broken translational symmetry in two perpendicular
directions (z and y in our model on Fig. 1), in which
conditions on boundaries are different from those inside
the structure. Considering that there are no distur-
bances of the crystalline structure between the boundary
surfaces of the wire, we assume it ideal. Otherwise, if
there are impurities, vacancies etc, the ultra-narrow wire
is deformed. The subject of our research in this paper
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Fig. 1. Cross section (along X-plane) of the ultra-
narrow wire model.

is the ideal ultra-narrow wire of simple cubic crystalline
structure, whose basic crystallographic parameters are:

ax = ay = az = a; Nx ∼ 108 � Ny,z ∼ 10;

Cα,αn,m = Cαn,n±λ ≡ Cαnxnynz ;nx±1,nynz =

Cαnxnynz ;nxny±1,nz = Cαnxnynz ;nxnynz±1 ≡ C
α

Cαny0;ny,−1 = Cαny,−1;ny0 = (1 + ε)Cα;

CαnyNz ;nyNz+1 = CαnyNz+1;nyNz = (1 + γ)Cα

Cα0nz ;−1nz = Cα−1nz ;0nz = (1 + σ)Cα;

(57)
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CαNynz ;Ny+1,nz = CαNy+1,nz ;Nynz = (1 + ϕ)Cα,

(ε, γ, σ, ϕ) ≥ −1,

where ny,z ∈ (0, 1, 2, · · · , Ny,z) is the atom site counter
along y and z directions. Considering all the above, we
can conclude the following about described model struc-
ture:

1. Ultra–narrow wires are confined along y and z di-
rections, and unbounded along x direction. That
means they have four boundary surfaces: two paral-
lel to the XY planes (for z = 0 and z = Lz = Nza),
and two parallel to XZ planes (for y = 0 and
y = Ly = Nya).

2. There are Ny + 1 atoms along y-axis, and Nz + 1
atoms along z-axis.

3. Torsion Hooke elastic constants Cαβ have much
lower values than the straining constants Cα so that
they can be ignored.

4. Despite the fact that there are no atoms belong-
ing to ultra-narrow wire outside boundary surfaces
along y and z directions, we assume that interaction
between boundary layers and atoms of external en-
vironment nevertheless exists through changed the
Hooke forces [8–11]. Elastic constants which de-
scribe these interactions are modified with appro-
priate coefficients ε and γ, σ and ϕ.

Taking into account the technology of ultra-narrow wires,
there is no reason to suppose that it will be on all sides
surrounded by a different materials. A simplified, but
much more realistic approach (Fig. 2) implies that the
atoms that consist the quantum wire are surrounded
by atoms belonging to only two different environments
(σ, ϕ→ ε).
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Fig. 2. Realistic model of ultra-narrow wire.

With respect to all these conditions and also regarding
the fact that layers with ny ≤ −1 and ny ≥ Ny + 1, and
also nz ≤ −1 and nz ≥ Nz + 1 are not present, we have
to take into account the following:

uα;nx,ny,nz = 0; −1 ≥ ny,z ∧ ny,z ≥ Ny,z + 1;

(ny,z 6∈ [0, Ny,z]).

These boundary conditions correspond to the free sur-
faces model, but in reality there are other cases. An-
other approach often found in the literature is the rigid
walls model (or frozen surfaces model), which implies
that boundary conditions with zero atomic displacements
must be applied on the boundary surfaces. In this paper
we have chosen flexible boundary surfaces, considering
that this is closer to the real situation in which the ultra-
narrow wire can “breathe”. In contrast, the rigid walls
model implies the emergence of phonon standing waves
with nodes at the boundaries.

2. Theoretical analysis
Our theoretical analysis starts from the standard form

of the phonon subsystem Hamiltonian for bulk struc-
tures [10–13], written in the harmonic and nearest neigh-
bors approximations. In this case it is adapted to the
model structure of ultra-narrow wire presented on Fig. 1,
i.e. on Fig. 2:

H = T + Veff ; T =
∑
α;n

p2α;n
2M

; (1)

Veff =
∑

α;nx,ny,nz

Cα
4

[(
uα;nx+1,ny,nz − uα;nx,ny,nz

)2
+
(
uα;nx−1,ny,nz − uα;nx,ny,nz

)2
+
(
uα;nx,ny+1,nz − uα;nx,ny,nz

)2
+
(
uα;nx,ny−1,nz − uα;nx,ny,nz

)2
+
(
uα;nx,ny,nz+1 − uα;nx,ny,nz

)2
+
(
uα;nx,ny,nz−1 − uα;nx,ny,nz

)2]
. (2)

Here, uα;n are the small movements of atom in place
n from its equilibrium position in direction α, and pα;n
corresponding momentum.

In order to find the phonon dispersion law, we will
make use of the phonon two-time commutator Green
function [12–14]:

Gαn,m(t− t′) ≡ 〈〈uα;n(t) | uα;m(t′)〉〉 =

Θ(t− t′)〈[uα;n(t), uα;m(t′)]〉0 (3)
and corresponding equation of motion:
−Mω2Gαn,m(ω) =

− i~
2π
δn,m +

1

i~
〈〈[pα;n, H] | uα;m〉〉ω. (4)

The next step consists in calculating the commutators
in Green function from equation (4). By applying the
partial spatial Fourier-transformation along y and z-
directions, where the translational symmetry has been
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disrupted:
Gαnxnynz ;m(ω) =

1

Nx

∑
kx

e ikxa(nx−mx)Gαnynz ;mymz (kx;ω);

δnxmxδnymyδnzmz =

1

Nx

∑
kx

e ikxa(nx−mx)δnymyδnzmz , (5)

we get the system of (Ny+1)×(Nz+1) nonhomogeneous
algebraic-difference equations with the same number of
undetermined Green functions [10–13]:

Knynz =

Gny−1,nz
+Gny,nz−1 + %Gny,nz +Gny,nz+1

+Gny+1,nz

, (6)

where:

% =
ω2

Ω2
α

− 4

(
1 + sin2 akx

2

)
; (7)

Gny,nz ≡ Gαnynz ;mymz (kx;ω);

Ω2
α =

Cα
M

;K′′n′′
ynz

=
i~

2πCα
δnynz,mymz .

Next, we have to determine the zeros of the determinant
associated with the system of equations (6), which – gen-
erally speaking – is not an analytically solvable task. It
can be performed numerically, for given values of param-
eters ε, γ, Ny and Nz. Therefore, we will focus on the
model of the free surfaces [10,11], when surface pertur-
bations are so small, that can be neglected (ε = γ = 0).
This means that the Hooke interaction of surface atoms of
ultra-narrow wire with atoms/molecules of surrounding
environments is of the same type and intensity. We called
this model “a model of ideal quantum wire with free sur-
faces”. It is particularly interesting because an analytical
solution for the phonon dispersion law and other physi-
cal characteristics exists. This choice of model favors the
quantum size effect in determining the microscopic and
macroscopic properties of the sample [1,9]. The contri-
butions of all other confinement effects (shape, etc) are
negligible and can only slightly affect changes caused by
the size effect [2, 3, 5–7].

The Green functions from equation (6) can be ex-
pressed in form:

Gny,nz =
Dny,nz

DNy+1,Nz+1
,

where Dny,nz is the variable-determinant and
DNy+1,Nz+1 the two-dimensional determinant of
the system. Poles of Green functions can be defined
by the equation: DNy+1,Nz+1 ≡ 0, and determinant
DNy+1,Nz+1 can be determined through the Chebyshev
polynomials of second order. In that manner, we get the
dispersion law of phonons in form:

Eαk = 2

√
sin2 akx

2
+ sin2 aky(µ)

2
+ sin2 akz(ν)

2
(8)

(µ = 1, 2, . . . , Ny + 1; ν = 1, 2, . . . , Nz + 1), which is

almost exactly the same as the one for bulk structures.
The difference between the two equations is, however,
that quasimomentum of phonons in ultra-narrow wires
can take only discrete values in y and z directions, and
is continual in x direction. It also can be shown that
minimum phonon energy in ultra-narrow wires is not
equal to zero:

∆ ≡ ∆min = Eαkmin
= Eαkx=0,ky=kmin

y ,kz=kmin
z

=

2

√
sin2

akmin
y (µ)

2
+ sin2 ak

min
z (ν)

2
, (9)

kmin
y (µ) = kmin

y (1) =
π

a

1

Ny + 2
;

kmin
z (ν) = kmin

z (1) =
π

a

1

Nz + 2
,

and the corresponding minimum phonon frequency is:

ωmin
α = 2

v

a

×
√

sin2 π

2 (Ny + 2)
+ sin2 π

2 (Nz + 2)
6= 0. (10)

The Fig. 3 graphically shows the spectra of phonons in
ultra-narrow wires E = Eµ,ν

(
X2
)
, where X ≡ sin(akx/2)

for µ = 5 and ν = 4. The blue-colored dashed lines
limit the continual zone of allowed phonon energies in
bulk structures. Energy gaps and discreteness of phonon
energy, which are the main consequences of spatial
confinement, also can be seen.

0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

2.5

3

X
2

Dmin

Fig. 3. Phonon spectra in ultra-narrow wires.3. Thermodynamics of ultra-narrow wires
Our main goal in this paper is to determine the physi-

cal quantities that define the thermodynamic properties
of ultra-narrow wire, in order to compare them with
those of larger samples. To this end, it is necessary first
to determine corresponding values for the Debye wave
vector (kwD) and the Debye frequency (ωwD). Assuming
that the wave vectors of phonons in ultra-narrow wire
are distributed within a sphere of radius kwD, their
possible values along x, y, and z directions are:

kx ∈
[
−π
a
,+

π

a

]
⇒ ∆kx =

2π

a
,
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ky/z ∈
[

1

Ny/z + 2
· π
a
,
Ny/z + 1

Ny/z + 2
· π
a

]
⇒

∆ky/z =
Ny/z

Ny/z + 2
· π
a
,

from which it follows:

V =
4

3
π (akwD)

3
a3∆kx∆ky∆kz ⇒

kwD =
3

√
3π2

2a3
· 3

√
Ny

Ny + 2
· Nz
Nz + 2

⇒

kwD = kbD · 3

√
Ny

2 (Ny + 2)
· Nz

2 (Nz + 2)
=

kfD · 3

√
Ny

2 (Ny + 2)
, (11)

where kbD =
3
√

6π2/a is the Debye wave vector for bulk.
In order to obtain the number of allowed values of k per
volume unit of k−space, we are using the next adjusted
expression:

DwD(ω) =
3NxN

w
y N

w
z a

3

(2π)3

∫ π

0

sinΘ dΘ

∫ 2π

0

dϕ

∫ kD

kmin

k2dkδ(ω − vk) =
NxN

w
y N

w
z a

3

2π2
· ω

2

v3
.

In the next step, we are applying the normalization condition: starting from the fact that the total number of phonon
states is equal to the number of atoms, we get∫ ωD

ωmin

DwD(ω)dω = N ⇒
NxN

w
y N

w
z a

3

2π2v3

∫ ωD

ωmin

ω2dω = Nx
(
Nw
y + 1

)
(Nw

z + 1) ,

and, as a result, Debye frequency in ultra-narrow wire is obtained in form:

ωwD
ωbD

=
3

√
Nw
y + 1

Nw
y

· N
w
z + 1

Nw
z

+
4

3π2

[
sin2 π

2 (Ny + 2)
+ sin2 π

2 (Nz + 2)

]3/2
, (12)

where: ωbD = kbD · v is Debye frequency in corresponding unbounded structure. By analyzing equation (12) it can be
concluded that Debye frequency has somewhat higher value in ultra-narrow wire, than in sample that is larger in size.

Ultra-narrow wire internal energy is calculated by means of standard definitional form:

Uw =

∫
dωwD(ωw)〈n(ωw, T )〉~ωw =

ωwD∫
ωwmin

dωw
(

(ωw)2V

2π2v3

)(
~ωw

e
~ωw
kBT − 1

)
= 9NwkBT

(
T

TwD

)3
xwD∫

xwmin

(xw)3

exw − 1
dxw,(13)

where: Nw = Nx(Ny + 1)(Nz + 1), xw = ~ωw
kBT

, xwD =
TwD
T , TwD =

~ωwD
kB

and xwmin =
~ωwmin

kBT
.

In low temperature region (xwD →∞), equation (13) becomes:

Uw = 9NwkBT

(
T

TwD

)3
∞∫

xwmin

(xw)3

exw − 1
dxw = 9NwkBT

(
T

TwD

)3

π4

15
−

xwmin∫
0

(xw)3

exw − 1
dxw

 ,
i.e, taking into account the series expansion (et − 1)

−1
=
∑∞
j=1 e−jt:

Uw = 9NwkB
T 4

(TwD )
3

π4

15
+

∞∑
j=1

1

j
e−jx

w
min

[
(xwmin)3 +

3

j
(xwmin)2 +

6

j2
xwmin +

6

j3

]
−
∞∑
j=1

6

j4

 . (14)

In order to find the ultra-narrow wire thermal capacitance per an unit cell (i.e, per an atom), we used the standard
equation C∗w = 1

Nw
∂Uw
∂T and we obtain:

C∗w =
12π4

5
kB

(
T

TwD

)3

+9kB

(
T

TwD

)3 ∞∑
j=1

1

j
e−jx

w
min

[
1

j
(xwmin)4 +

(
1 +

3

j2

)
(xwmin)3 +

6

j

(
1 +

1

j2

)
(xwmin)2 +

6

j2

(
3 +

1

j2

)
xwmin +

24

j3

]
.(15)

By introducing the following marks: T
T bD
≡ T ; ω

w
min

ωbD
≡ ∆w;

ωwD
ωbD

=

{
Nw
y + 1

Nw
y

· N
w
z + 1

Nw
z

+
4

3π2

[
sin2 π

2 (Ny + 2)
+ sin2 π

2 (Nz + 2)

]3/2}1/3

≡ f (Ny, Nz) ,
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it follows:
T

TwD
=
ωbD
ωwD
· T =

T
f (Ny, Nz)

, xwmin =
TwD
T
· ω

w
min

ωwD
=

∆w

T
,

previous equation becomes:

C∗w =
9kB

f3 (Ny, Nz)
(16)

×

4π4

15
T 3 +

∞∑
j=1

1

j
e−j

∆w
T ·

[
1

j

∆4
w

T
+

(
1 +

3

j2

)
∆3
w +

6

j

(
1 +

1

j2

)
∆2
wT +

6

j2

(
3 +

1

j2

)
∆wT 2 +

24

j3
T 3

] .

In order to compare this expression with the one obtained for the unbounded crystalline structures, we divided
equation (16) by the constant: C0 = 12π4

5 kB, whose dimension is equal to dimension of thermal capacitance:

C̃w ≡
C∗w
C0

= f−3 (Ny, Nz) (17)

×

T 3 +
15

4π4

∞∑
j=1

1

j
e−j

∆w
T

[
1

j

∆4
w

T
+

(
1 +

3

j2

)
∆3
w +

6

j

(
1 +

1

j2

)
∆2
wT +

6

j2

(
3 +

1

j2

)
∆wT 2 +

24

j3
T 3

] .

Calculation of phonon contribution in thermodynamic
properties of low-dimensional structures (ultra-thin film
and superlattice) was the subject of our previous inves-
tigations and has been referred [4, 10, 11, 15–20] in the
past period. Here, we will use some of these results in
order to compare them with the results obtained in this
paper for ultra-narrow wires.

tw

bulk

N Ny z= =5

N Ny z= =2

0

C
~

0 2 4 6 8 10
10 x

2

10 x
4

2

4

6

8

Fig. 4. Low-temperature behavior of thermal capaci-
tance.

Figure 4 shows relative thermal capacitances (C̃) of
bulk sample and ultra-narrow wire subject to the relative
temperature (T ) for Ny = Nz = 2 and Ny = Nz = 5 in
low-temperature region. In order to obtain the required
dependency in graphical form, we selected the following
parameter values:

• the speed of sound in the crystal: v ≈ 104 m/s;

• lattice constant: a ≈ 10−10 m;

• Debye frequency in bulk: ωbD ≈ 4 · 1014 rad/s;

• minimum phonon frequency in ultra-narrow wire
(for Ny = Nz = 2): ωwmin ≈ 1.0824 · 1014 rad/s.

The figure shows that thermal capacitance of confined
crystalline structure (ultra-narrow wire) is considerably
lower than that of massive samples. It is also evident
that with an increase in a number of layers thermal ca-
pacitance of ultra-narrow wire tends toward that of bulk
structure.

4. Conclusions
Understanding the basic physical properties of nano-

structures is essential for their implementation. Ther-
modynamic characteristics related to phonon movements
through the nanometer-sized samples are of particular in-
terest. Independent of the type of lattices, the thermo-
dynamics of their subsystems (electrons, magnons, exci-
tons, solitons, etc.) is determined when the subsystem is
in thermodynamic equilibrium with phonons. Phonons
are collective mechanical oscillations of atoms and repre-
sent the most important system of excitations, because
they are present in all systems and their influence, more
or less, changes behavior of all other objects or excita-
tions of the system. In this paper, we applied a rigid
theoretical approach that implies that the ultra-narrow
wire is surrounded by different materials from every side.
In that manner, desirable properties of the structure can
be changed by changing the lattice constant, by inserting
atoms of different kinds and by changing the parameters
ε, γ, σ and ϕ. However, taking into account the produc-
tion techniques of ultra-narrow wire, there is no reason
to suppose that it will be on all sides surrounded by a
different materials. A simplified, but much more realistic
approach implies that the atoms that consist the ultra-
narrow wire are surrounded by atoms belonging to only
two different environments (σ, ϕ→ ε).

Temperature analysis of phonon contribution to the
thermodynamic characteristics behavior of ultra-narrow
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wire was carried out in detail, and – with respect to all
of the above mentioned – we came to the following con-
clusions: it is well known fact that the phonons at Debye
frequencies largely affect the transport properties of ma-
terials [12–14]. In this paper, we have chosen the model
of ideal quantum wire with free surfaces (ε = γ = 0),
because only this kind of model enables us to obtain an-
alytical solutions and encompasses all the impacts of the
quantum size effect on its thermodynamic properties.

Our results, therefore, suggest that the ultra-narrow
wire will be inferior electrical and thermic conductor in
comparison to the structures that are larger in size, with
no chemical and structural differences between them.
But it is also established that poor conductors (under
normal conditions) are at the same time the best super-
conductors, and vice versa [4,15–18,21–23]. Against this
background, it can be concluded that in the spatially
very limited structures the best superconducting prop-
erties can be expected, or that restriction of the spatial
dimensions of the structure plays a major role in improv-
ing superconducting properties of material.

Finally, it should be noted that the results obtained
are not completely conclusive, because the study in-
cluded ideal structures with extremely regular geometri-
cal shapes and surfaces, free from defects that real sam-
ples are required to have. On the other hand, the thermal
behavior of materials are affected by many different fac-
tors: the density, thermal expansion of the material, the
purity of the sample, surface absorption, sample size, etc,
whereby for each particular material the different effect
is dominant. Only with careful and complete theoreti-
cal and experimental analysis of individual properties of
nanostructures can be investigated thermodynamic be-
havior of materials. For this purpose it is necessary to
provide many more theoretical calculations and develop
different methods for their determination.
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