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The dispersion law, density states of phonons, thermodynamics properties and thermal conductivity was
analyzed in this paper. It has been shown that at low temperatures, thermal conductivity of thin �lm is considerably
lower that of bulk-structure. It turned out that phonons in thin �lm require activation energy for exciting. This
leads to extremely low speci�c heat and speci�c conductivity at low temperatures. Consequences of quoted facts
were discussed in detail and their in�uence on kinetic and thermodynamic properties of thin �lms is estimated.
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1. Introduction

The scope of our study in this paper is limited to the
analysis of the phonons, i.e. phonon behavior in thin lay-
ered structures or crystalline �lms, which implies the ex-
istence of two boundary surfaces perpendicular to a pre-
ferred direction. Besides that, these �lm-structures could
be doped by foreign atoms from one or both sides of the
boundary surfaces in which way the internal con�gura-
tion of the atom distribution is disturbed.
Since elastic constants and atomic masses de�ne

phonon spectra and states, we conclude that they must
be di�erent in the �lm-structures with respect to the
corresponding ones in the ideal unbounded and trans-
lational invariant crystalline structures. The change of
mass distribution along one direction and the existence
of the �nite structure width along that direction intro-
duces additional boundary conditions into the analysis of
the phonon behavior.
We shall study the thin �lm �cut-o�� from the ideal

tetragonal crystalline structure with lattice constants
ax = ay = a and az = 3a. This structure has a �nite
width in the z-direction, whileXY -planes are assumed to
be in�nite, meaning that the structure possesses two in-
�nite boundary surfaces (parallel to the unbounded XY -
-planes) lying at z = 0 and z = L (Fig. 1). The number of
the atoms located along z-direction is assumed to be Nz,
and it is also assumed that torsion constants Cαβ (α 6= β)
can be neglected with respect to the elongation constants
Cαα [1].
We have decided to study phonon behavior in

the above mentioned �lm-structures for two reasons.
Phonons are the basic elementary excitations in the
condensed matter which have the decisive role in the
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Fig. 1. Sight of crystalline �lm-structure model.

creation of the Cooper pairs of electrons in the low-
-temperature superconductivity. On the other hand, al-
though the existence of phonons and Cooper pairs in
the high-temperature superconductive ceramics is exper-
imentally established [2], the very mechanism of the su-
per�uid charge transfer is not yet resolved [1, 3]. Taking
into account the technical and technological treatments
for the production of these high-temperature supercon-
ductors � they are small-grain crystalline structures (of
small dimensions with pronounced boundaries) produced
by doping, more precisely sputtering by guest atoms in
certain stoichiometric ratio [4, 5], it is necessary to for-
mulate the corresponding theoretical model.

The simplest model for the bounded structures is the
ideal crystalline �lm. Within the framework of this model
we shall study only and exclusively the in�uence of the
system boundaries onto spectra and states of phonons
and their contribution to the basic physical properties
of the system. In order to consider also the in�uence
of the doping, we shall study the spectra and states of
phonons in the deformed �lms and estimate what has the
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stronger in�uence to the change of the system behavior:
the existence of the boundary surfaces or the disturbance
of the internal distribution and type of atoms inside the
system.
The starting point of our study will be the standard

Hamiltonian of the phonon system [6, 7] in the nearest
neighbors' approximation

HID =
1

2

∑
n

p2n
Mn

+
1

4

∑
n,λ

Cn,λ(un − un+λ)2, (1.1)

where pn and un are the momentum and displacement
of the atom of mass Mn at the crystal site n = a(nxex+
nyey + 3nzez), while Cn,λ ≡ Cλ,n is Hooke's elastic con-
stants between the atom at the site n and its neighboring
atoms at the site m = n+ λ, λ = a(ex + ey + 3ez).
One of the most important aims is to study if the

minimal frequencies of the atoms in the �lm are non-
-vanishing, i.e. does the phonon energy spectrum possess
the gap. In the structures where such gap exists, there
can arise the damping or the elimination of the acousti-
cal phonons [1, 4] so that there exist only the phonons of
optical type. This would result in the �lm behavior like a
�frozen� structure until certain corresponding activation
temperature is reached � the temperature necessary for
the creation of the phonons in the �lm [8], since below
that temperature, real (acoustical) phonons cannot be
present�.
Taking this into account, the presence of the phonon

gap might represent the possible explanation of the fact
[9] that thin �lms represent better ordered thermody-
namical systems and that they have higher critical su-
perconductive temperature than the corresponding bulk-
structures. Since the change in the properties of the
anisotropic structures, is caused by the change in the
dispersion law, it is necessary to study the behavior of
relevant physical quantities in order to obtain a more
complete picture about these processes.

2. Dispersion law and states of phonons in �lms

In Sect. 2 we derive the dispersion law for phonons
and calculate the possible phonon states in the above
mentioned crystalline �lms.
The Hamiltonian of the phonon subsystem of the

model �lm-structure in the nearest neighbors approxima-
tion [10] is given in the form of expression (1.1), where

−Nβ
2
≤ nβ ≤

Nβ
2
, Nβ ≈ 108, β ∈ (x, y),

0 ≤ nz ≤ Nz, Nz =
L

3a
≈ 20,

so that it can be written in the expanded form as

HFS =
1

2

∑
α

∑
nx,ny

Nz∑
nz=0

(pαnx,ny,nz
)2

Mnx,ny,nz

�For example, electrons would move in such a structure without

friction up these temperatures, i.e. they would behave like ideal

conductors.

+
1

4

∑
α

∑
nx,ny

{
Cα−1

(
uαnx,ny,0

)2
+ Cα0

[(
uαnx+1,ny,0

− uαnx,ny,0

)2
+
(
uαnx−1,ny,0 − u

α
nx,ny,0

)2
+
(
uαnx,ny+1,1 − uαnx,ny,0

)2
+
(
uαnx,ny−1,0 − u

α
nx,ny,0

)2
+
(
uαnx,ny,1 − u

α
nx,ny,0

)2
+
(
uαnx,ny,0

)2 ]
+Cα1

[(
uαnx,ny,1 − u

α
nx,ny,2

)2
+
(
uαnx,ny,1 − u

α
nx,ny,0

)2]
+

Nz−1∑
nz=1

Cαnz

[(
uαnx+1,ny,nz

− uαnx,ny,nz

)2
+
(
uαnx−1,ny,nz

− uαnx,ny,nz

)2
+
(
uαnx,ny+1,nz

− uαnx,ny,nz

)2
+
(
uαnx,ny−1,nz

− uαnx,ny,nz

)2 ]
+

Nz−2∑
nz=2

Cαnz

[(
uαnx,ny,nz+1 − uαnx,ny,nz

)2
+
(
uαnx,ny,nz−1 − u

α
nx,ny,nz

)2 ]
+ CαNz−1

[ (
uαnx,ny,Nz−1 − u

α
nx,ny,Nz

)2
+
(
uαnx,ny,Nz−1 − u

α
nx,ny,Nz−2

)2 ]
+ CαNz

[(
uαnx+1,ny,Nz

− uαnx,ny,Nz

)2
+
(
uαnx−1,ny,Nz

− uαnx,ny,Nz

)2
+
(
uαnx,ny+1,Nz

− uαnx,ny,Nz

)2
+
(
uαnx,ny−1,Nz

− uαnx,ny,Nz

)2
+
(
uαnx,ny,Nz−1

− uαnx,ny,Nz

)2
+
(
uαnx,ny,Nz

)2 ]
+ CαNz+1

(
uαnx,ny,Nz

)2}
. (2.1)

This Hamiltonian describes the �lm-structure model pre-
sented in Fig. 1. It enables further theoretical analysis of
the properties, speci�c e�ects and changes in the phonon
behavior in above mentioned translational non-invariant
systems. All changes and speci�c e�ects which can oc-
cur in the system, will be treated as a strict consequence
of the contribution of the mechanical vibrations of the
atoms of the crystal lattice under the in�uence of the
presence of boundary surfaces and asymmetric distribu-
tion of the atoms along one preferred (z) crystallographic
direction in that system.

Ideal �lm-structures

The concept of the ideal �lm means here the model
of the crystal bounded by two parallel surfaces which
can �breathe� (no rigid walls) along one crystallographic
direction (which we choose for the positive direction of
z-axis) perpendicular to the boundary surfaces and un-
bounded in the two other remaining directions. Further-
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more, besides boundaries, there are no other defects in
the ideal �lm, so inside the boundaries we encounter sin-
gle atom tetragonal structure.

The Hamiltonian, expression (2.1), adapted to the
above mentioned model can be separated into two parts:
the �rst one HS, which includes �surface� terms and the
second one HB, which includes �bulk� terms subject to
the conditions (see Fig. 1):

Mnx,ny,nz
≡M,

Cαnxnynz ;nx±1,nynz
= Cαnxnynz ;nxny±1,nz

= Cαnxnynz ;nxnynz±1 ≡ Cα.

Since there are no layers for nz ≤ −1 and for nz ≥ Nz+1,
we must include the following condition, too:

uαnx,ny,l = 0, l ≤ −1 ∧ l ≥ Nz + 1 (i.e. l 6∈ [0, Nz]) .

If we would assign Cα−1 = CαNz+1 = 0, then the bound-
ary atoms (for nz = 0 and nz = Nz) would be �frozen�,
i.e. we would have the e�ects of rigid walls [11]. In this
way, the expression for the total Hamiltonian of the ideal
crystalline �lm obtains the following form:

HIF = HS +HB, (2.2)

where

HS =
1

2M

∑
α

∑
nx,ny

[(
pαnx,ny,0

)2
+
(
pαnx,ny,Nz

)2]

+
1

4

∑
α

Cα
∑
nx,ny

[
2
(
uαnx,ny,0

)2
+2
(
uαnx,ny,Nz

)2
+
(
uαnx,ny,Nz−1 − u

α
nx,ny,Nz

)2
+
(
uαnx,ny,1 − u

α
nx,ny,0

)2
+
(
uαnx,ny,0 − u

α
nx+1,ny,0

)2
+
(
uαnx,ny,0 − u

α
nx−1,ny,0

)2
+
(
uαnx,ny,0 − u

α
nx,ny+1,0

)2
+
(
uαnx,ny,0 − u

α
nx,ny−1,0

)2
+
(
uαnx,ny,Nz

− uαnx+1,ny,Nz

)2
+
(
uαnx,ny,Nz

− uαnx−1,ny,Nz

)2
+
(
uαnx,ny,Nz

− uαnx,ny+1,Nz

)2
+
(
uαnx,ny,Nz

− uαnx,ny−1,Nz

)2 ]
, (2.3)

HB =
1

2M

∑
α

∑
nx,ny

(
pαnx,ny,nz

)2
+
1

4

∑
α

Cα

×
∑
nx,ny

{
Nz−1∑
nz=1

[(
uαnx+1,ny,nz

− uαnx,ny,nz

)2

+
(
uαnx−1,ny,nz

− uαnx,ny,nz

)2
+
(
uαnx,ny+1,nz

− uαnx,ny,nz

)2
+
(
uαnx,ny−1,nz

− uαnx,ny,nz

)2 ]
+

Nz−2∑
nz=2

[(
uαnx,ny,nz+1 − uαnx,ny,nz

)2
+
(
uαnx,ny,nz−1 − u

α
nx,ny,nz

)2 ]
+
(
uαnx,ny,Nz−1 − u

α
nx,ny,Nz−2

)2
+
(
uαnx,ny,1 − u

α
nx,ny,2

)2}
. (2.4)

Energy spectra and states will be determined by using
Green's function method. For that purpose we observe
two/time commutator Green's function [6, 7] with ade-
quate equation of motion

Gαn,m(t− t′) ≡ 〈〈uα;n(t)|uα;m(t′)〉〉
= Θ(t− t′)〈[uα;n(t), uα;m(t′)]〉0,

M
d2

dt2
Gαn,m(t− t′) = − i~δn,mδ(t− t′)

+
Θ(t− t′)

i~
〈[[pα;n(t), H(t)] , uα;m(t′)]〉0. (2.5)

Calculating corresponding commutators and using the
partial spatial Fourier-transformation (because the trans-
lational symmetry has been disturbed only along
z-direction)

Gαnx,ny,nz ;mx,my,mz
(ω) =

1

N

∑
kx,ky

Gαnz,mz
(kx, ky;ω)

× e− ia[(nx−mx)kx+(ny−my)ky ], (2.6)

we obtain the system of N I
z + 1 homogeneous algebraic-

-di�erence equations [12]:

Gαnz−1,mz
+ %αkG

α
nz,mz

= Kδnz,mz
, (2.7)

where Gαnz,mz
≡ Gαnzmz

(kx, ky;ω), K =
i~

2πCα
, k =√

k2x + k2y, while the determinant of that system of equa-

tions is

DNI
z+1(%) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

%− ε 1 0 0 . . . 0 0 0 0

1 % 1 0 . . . 0 0 0 0

0 1 % 1 . . . 0 0 0 0

...
...

...
...
. . .

...
...

...
...

0 0 0 0 . . . 1 % 1 0

0 0 0 0 . . . 0 1 % 1

0 0 0 0 . . . 0 0 1 %− γ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Nz+1

, (2.8)

where



814 S.K. Ja¢imovski et al.

%αk =
ω2

Ω2
α

− 4 sin2
akx
2
− 4 sin2

aky
2
− 2 ≡ %,

Ωα =

√
Cα
M
. (2.9)

In order to �nd the spectra of the allowed phonon en-
ergies amounts, we must determine the zeroes of the de-
terminant (2.8) i.e. to solve the equality

DNz+1(%; ε, γ) ≡ 0 =⇒ % = %µ(ε, γ),

µ = 1, 2, 3, . . . , N I
z + 1. (2.10)

This task in general is not analytically solvable (it can
be solved numerically with the given parameters ε, γ
and N I

z ). When ε = γ = 0 (model of the lost sur-
faces [13]), we obtain analytical solution

DNI
z+1(%) = %PNI

z
(%)− PNI

z−1(%) ≡ PNI
z+1(%), (2.11)

where the determinant (2.8) of the system of Eq. (2.7) is
expressed directly through the characteristic Chebyshev
polynomials of order N I

z . In this case, we obtain an ex-
pression that gives us the phonon dispersion law in ultra-
thin and structurally non-deformed crystalline nano�lm

I

Eαkxky (µ) ≡ ~Iωαkxky (µ) = EαI

√
GI

µ + Fkxky

= 2~Ωα
√
GI

µ + Fkxky , (2.12)

where

G
I

µ ≡ sin2
akz(µ)

2
, Fkxky ≡ sin2

axkx
2

+ sin2
ayky
2

,

(2.13)

where kx and ky are virtually continual within the inter-
val [0, π/a], and kz has distinctly discrete values

kz(µ) =
π

a

µ

N I
z + 2

, µ = 1, 2, 3, . . . , N I
z + 1.

Fig. 2. Phonon spectra in the ideal ultrathin crys-
talline �lms.

We represent graphically this energy spectrum in Fig. 2
vs. XY -plane vector k2 = k2x + k2y:

I

Ezµ ≡
(

I

Ezkxky (µ)/E
z
I

)2
=

I

Ezkz(µ)
(
Fkxky

)
.

Figure 2 represents energy spectrum of phonons in
the ideal (ultrathin Nz = 4) crystalline �lms vs. two-
-dimensional (XY planar) wave vector. Within the band
of bulk energies with continual spectrum (bulk limits are
denoted by solid dashed lines) one can notice �ve allowed
discrete phonon energies in the �lm studied (thin solid
lines). One can notice the narrowing of the energy band
and the existence of the energy gap.
One can clearly see from the plot explicate discreteness

of the allowed energy levels of phonons in the ideal �lm
with respect to the continuum of these values for the cor-
responding bulk-structures. All three acoustic frequen-
cies in bulk-structures vanish when three-dimensional
(spatial) vector k = |k| vanishes, while the minimal fre-
quencies of phonons in the thin ideal �lm-structure are

∆i ≡ (ωI
α)min ≡ ωI

α(kx = ky = 0, kz = kmin
z )

≈ Ωα
π

N I
z
> 0. (2.14)

On the other hand, maximal values of the frequencies of
acoustic branches in the ideal in�nite crystal tend to the
value (ωB

α)max = 2Ωα
√
3 when kα → π/a, α = x, y, z,

while in the studied ideal �lm they are

(ωI
α)max ≡ ωI

α

(
kx = ky =

π

a
, kz = kmax

z

)
≈ 2Ωα

√
3

[
1− π2/12

(N I
z )

2

]
< (ωB

α)max . (2.15)

It can be also seen from the same �gure that the width
of the energy band in the �lm is narrower. From ex-
pressions (2.14) and (2.15) we can determine the total
narrowing of the band of allowed energies of the phonons
in the �lm-structures with respect to the bulk band

W
I

α ≡ ~ {(ωB
α)max − [(ωI

α)max − (ωI
α)min]}

≈ ~Ωα
π (N I

z + 1)

(N I
z )

2 > 0. (2.16)

3. Phonon thermodynamics of thin

�lm-structures
Forasmuch as the properties of anisotropic structures

are conditioned by the change of dispersion law, it is
necessary to observe behavior of certain thermodynamic
properties towards obtainment of better understanding
about those properties. Phonon participation in ther-
modynamic properties (or heat capacitance temperature
behavior, i.e. generally � in heat transferring) in thin
�lm was found in our previous paper [14�18].
Getting that, when k → 0 (in long-wave approxima-

tion: 4[sin2(akx/2)+ sin2(aky/2)] ≈ a2k2, k2 = k2x+ k
2
y),

energies of all three phonon branches have non-zero val-
ues, there can be utilized dispersion relations (2.12), in
somewhat simpli�ed form

E(k) =
√
a2k2E2

0 +∆2
f , (3.1)

where

∆f = akmin
z E0, E0 ≡ ~

√
Cα
M
. (3.2)

It should be speci�cally emphasized that veri�cation of
phonon dispersion law at very low values of k is virtually
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impossible, so that veri�cation of existence of phonon gap
detects itself in measurement of low temperature thermal
capacitances in �lm and corresponding ideal structure.
The thermal capacitance is analyzed, whereby at �rst

internal energy is calculated in terms of standard form
[6, 7, 11, 19]:

Uf = 3
∑

kx,ky,kz

E(k)
(
eE(k)/θ − 1

)−1
. (3.3)

Going over from sum in last expression to integral in ac-
cordance with the formula�:∑

kx,ky,kz

−→ 3(Nz + 1)
∑
kx,ky

−→ 3NxNy(Nz + 1)a2

4π2

×
2π∫
0

dϕ

kmax∫
0

kdk,

and taking kmax ≈ kD =
3
√
6π2, after suitable notations

η ≡
√
N2
z

3
+Nz + 1, ζ ≡

√
1 +

(
Nz + 2

π

3
√
6π2

)2

and adequate operations, expression for internal energy
has been obtained in form

Uf (x) =
3Nf
4π2

∆4
f

E3
0

x2
{[
Z2

(
1

x

)
− η2Z2

(η
x

)
+ η2ζ2Z2

(
ηζ

x

)
− ζ2Z2

(
ζ

x

)]
+ 4x

[
Z3

(
1

x

)
− ηZ3

(η
x

)
+ ηζZ3

(
ηζ

x

)
− ζZ3

(
ζ

x

)]
+ 6x2

[
Z4

(
1

x

)
− Z4

(η
x

)
+ Z4

(
ηζ

x

)
− Z4

(
ζ

x

)]}
, (3.4)

where the symbol x is introduced for reduced temper-

ature: x =
θ

∆f
, Nf = NxNy(Nz + 1) and Zr(X) =

∞∑
j=1

j−r e−jX � the functions are called Dyson's func-

tions.
For �nding of expression for the thermal capacitance

per a unit cell (here: per an atom), the standard de�ni-
tional form [6, 7, 11, 19] is used:

Cf =
1

Nf

∂Uf
∂T
≡ kB
Nf

∂Uf
∂θ

=
1

∆f

kB
Nf

∂Uf
∂x

. (3.5)

�The transition
∑
k

→
∫

dk =

∫
d3k of Descartes coordinates

for �lm must be carried out to cylindrical coordinates due to �nite

thickness.

In accordance with that it is obtained

Cf (x) =
3kB
4π2

(
∆f

E0

)3{[
Z1

(
1

x

)
− η3Z1

(η
x

)
+ η3ζ3Z1

(
ηζ

x

)
− ζ3Z1

(
ζ

x

)]
+ 6x

[
Z2

(
1

x

)
− η2Z2

(η
x

)
+ η2ζ2Z2

(
ηζ

x

)
− ζ2Z2

(
ζ

x

)]
+ 18x2

[
Z3

(
1

x

)
− ηZ3

(η
x

)
+ ηζZ3

(
ηζ

x

)
− ζZ3

(
ζ

x

)]
+ 24x3

[
Z4

(
1

x

)
− Z4

(η
x

)
+ Z4

(
ηζ

x

)
− Z4

(
ζ

x

)]}
. (3.6)

It is known that the phonon part in thermal capaci-
tance of the system is described with cubic temperature
dependence. By introducing nondimensional reduced
temperature, this dependence amounts to: Cb(x) =

12

5
π4NbkB

(
∆f

ED

)3

x3. For comparison of these depen-

dencies, these and expression (3.6) are divided by the

constant: C0 =
kB
2

(
∆f

ED

)3

, whose dimension is equal to

dimension of thermal capacitance, and nondimensional

properties are compared: Cf/b ≡
Cf/b

C0
. In Fig. 3 there

are shown relative (nondimensional) thermal capacitan-
ces of bulk (b) and �lm-structure (f) subject to the rela-
tive temperature x in low (a) and very low temperature
region.

Fig. 3. Thermal capacitance vs. temperature at low
and extremely low temperatures.

In Fig. 4 there are shown relative (nondimensional)
thermal capacitances of bulk (b) and �lm-structure (f)
samples versus relative temperature x, for ultrathin
Nz = 3 (a), thin Nz = 8 (b), and thick Nz = 48 (c)
�lm-structures, in comparison with bulk ones.
It can be seen that in low-temperature region (Fig. 3)

thermal capacitance of �lm is lower than that of massive
specimens, whereas at the intermediate temperatures sit-
uation is reversed [12]. Intersect point of two curves at
low temperatures is moving � with increase of �lm thick-
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Fig. 4. Thermal capacitance in low temperature
regime for ultrathin, thin, thick �lms.

ness � towards lower temperatures (a)�(c). Besides, it is
noticeable that thermal capacitance of �lm with decrease
of temperature declines faster than that of corresponding
ideal structure, or slowly rises with the increase of tem-
perature � to a certain upper temperature. Hence, for
�lm heating from certain lower to a certain upper tem-
perature, it is necessary to use more thermal energy per
mass unit than for heating the same quantity of corre-
sponding (with the identical crystallographical parame-
ters) unbounded structure to the same temperature. It
is in accordance with the fact that phonons in �lm have
non-zero excitation energy.

4. Thermal conductivity of thin �lm crystalline

Using the formula

κ = DC%M , (4.1)

where κ is the coe�cient of the thermal conductivity, D
� the di�usion coe�cient, C � the speci�c heat and %M
� the density, we shall determine the coe�cient thermal
conductivity of thin �lm. The analysis of the coe�cient
is the great practical interest, since it determines the heat
isolation and a number of other properties of these struc-
tures [20].
The di�usion coe�cient D (strictly speaking the di�u-

sion tensor Dij) will be found via the use of Kubo's for-
mula [21]. The temperature dependence of the �lm den-
sity will be determined using the Green function method.
All calculations will be carried out for ideal boundary

conditions in �lms, and for speci�c boundary conditions
on its surfaces, which can be chosen in a way which leads
to some useful e�ects. The optimal choice of boundary
conditions is the practical goal of investigations pertain-
ing to deformed structures.
Starting from the Kubo formula [22], one obtains the

following expression de�ning the di�usion coe�cient:

Df
ij(k) = lim

δ→0+

∞∫
0

dte−δt〈v̂i(0)v̂j(t)〉, (4.2)

where v̂i and v̂j are the velocity operators in the Heisen-
berg representation, and δ is the perturbation parameter
and indexes i, j takes values x, y, z.
The average is taken over great canonical ensemble, i.e.

〈. . .〉 = Sp
{
e(Φ+µN−H)/θ (. . .)

}
,

where Φ is thermodynamical potential, µ � chemical
potential, and H � the Hamiltonian of the system and
θ = kBT .

Using procedure given in [12] we obtain correlation
function in the form of

〈vf (t)vf (0)〉 =
~Cα
M2ωk

(
e− iωkt

e~ωk/θ − 1
− e iωkt

e−~ωk/θ − 1

)
.

(4.3)

In accordance with the general formula (4.2) and expres-
sion (2.3) the di�usion coe�cient is given by

Df ≡ Df
ij(k) =

∣∣∣∣∣ lim
δ→0+

~Cα
M2ωk

∞∫
0

e−δt
(

e− iωkt

e~ωk/θ − 1

− e iωkt

e−~ωk/θ − 1

)
dt

∣∣∣∣∣ = ~Cα
M2〈ω2

k〉
, (4.4)

where

ωαk ≡ ωαkx,ky,kz

= 2Ωα

√
sin2

akx
2

+ sin2
aky
2

+ sin2
akz
2
. (4.5)

The notation used in (4.5) is

Ωα ≡
√
Cα
M
, kx =

πµx
N I
xa
, ky =

πµy
N I
y a
,

µx/y ∈

[
−
N I
x/y

2
,+

N I
x/y

2

]
, N I

x/y ≈ 108,

while kz are solutions of the transcendental equation

cot(Nz − 1)akz (4.6)

= 4 cos3 akz−2(ρ0+ρN ) cos2 akz+(ρ0ρN−3) cos akz+ρ0ρN
− sin akz [4 cos2 akz+2(ρ0+ρN ) cos akz+(1−ρ0ρN )] ,

where

ρ =
Mω2

Cα
− 4

(
sin2

akx
2

+ sin2
aky
2

)
− 2. (4.7)

In the �cut-o�� case [1, 23] (the approximation ρ0 =
ρN = 0 will be called that) we obtain

kz =
πµz

a(N I
z + 2)

, µz = 1, 2, 3, . . . , N I
z + 1. (4.8)

It can be seen that levels kx and ky are equidistant, while,
due to the structure deformations, levels kz have lost
equidistant properties.

To determine the density, we �rst calculate the density
correction caused by molecular vibrations. Starting with
the standard expression [14]:

un =
∑
j,k

√
~

2MNωjk

[
b+j (k)e

− i (kn−ωj

k
t)

+ bj(k)e
i (kn−ωj

k
t)
]
ej(k), j ∈ (x, y, z), (4.9)

for molecular displacements, we can �nd the averages of
square displacements
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∑
n

〈u2n〉 ≡ Nf 〈u2〉 =
∑
j,k

~
2Mωjk

[1 + 2〈n̂k〉] ,

〈n̂k〉 =
1

eEk/θ − 1
. (4.10)

Introduction of the notation 〈u20〉 =
1

N

∑
k

~
2M〈ωk〉

, one

can �nd in (4.10):

〈u2〉 − 〈u20〉 =
3

2π

~
MωD

∆2
f

E2
0

{
Z1

(
1

x

)
− ηZ1

(
η
1

x

)
+

1

x

[
Z2

(
1

x

)
− ηZ2

(
η
1

x

)]}
. (4.11)

The density of the �lm is given by the formula

ρM =
M

〈(a0 + u)3〉
=

M

〈a30〉
1

1 + 3
〈u2〉
〈a20〉

ρM

≈ ρ
M

0

(
1− 3〈u2〉

〈a20〉

)
. (4.12)

Using Debye's approximation [14] we shall substitute 〈u2〉
in (4.12) with 〈u2〉 − 〈u20〉 from formula (4.11). Thus, we
obtain

ρM = ρM
0

(
1− 3

2π

~2∆2
fx

M〈a0〉2EDE2
0

{
Z1

(
1

x

)

− ηZ1

(
η
1

x

)
+

1

x

[
Z2

(
1

x

)
− ηZ2

(
η
1

x

)]})
.

(4.13)

Substituting (4.4), (3.6) and (4.13) in (4.1) we �nally
obtain the expression for the thermal conductivity coef-
�cient of thin �lm-structures

κf =
3kB
2π

~Ωα2

M〈ω2
k〉

(
∆f

E0

)2{
1

x

[(
e1/x − 1

)−1
− η3

(
eη/x − 1

)−1 ]
+ 3

[
Z1

(
1

x

)
− η2Z1

(
η
1

x

)]

+ 6x

[
Z2

(
1

x

)
− ηZ2

(
η
1

x

)]
+ 6x2

[
Z3

(
1

x

)

− Z3

(
η
1

x

)]}
ρM
0

(
1− 3

2π

~2

M〈a0〉2ED

(
∆f

E2
0

)2

× x
{
Z1

(
1

x

)
− ηZ1

(
η
1

x

)
+ x

[
Z2

(
1

x

)
− ηZ2

(
η
1

x

)]})
. (4.14)

Formula (4.14) was analyzed numerically as a function of
the scaled temperature x = θ/∆f . The notation

λb/f ≡
κb/f (x)

κ0
, κ0 =

8

9

(
6π2
)−2/3 ~

a3

(
∆f

E0

)3

,

representing scaled thermal conductivity, is introduced
into formula (4.14). The dependence of scaled thermal
conductivity on the scaled temperature is given in Fig. 5:

(a) at extremely low temperature (up to 5 K) � left, (b)
at higher temperature (in the range T > 5 K) � right.

Fig. 5. Thermal conductivity versus temperature.

It can be seen from �gures quoted that, at extremely
low temperatures T ≤ 4 K and at temperatures T ≥
180 K, the thermal conductivity of a �lm is lower than
that of a bulk. In the temperature range 4 < T < 180 K
the thermal conductivity of a bulk is lower than that of
a �lm.
At the end of this section we would like to point out

an important fact: since Eq. (4.6) does not have solution
kz = 0, all phonon energies in �lm have a gap. Conse-
quently, to excite the phonons in �lms some activation
energy is necessary.

5. Conclusion

Studying and comparing the phonon spectra and states
in the ideal unbounded and nondeformed (bulk) struc-
tures and the structures with broken translational sym-
metry (�lms) we have reached the following conclusions.

1. Mechanical vibrations in bulk-structures are plane
waves in all directions, while in the �lms they rep-
resent the superposition of the standing waves in
z-directions (perpendicular to the boundary sur-
faces) and plane waves in XY -planes (parallel to
boundary surfaces).

2. The amplitude of phonon displacements in the �lms
depends on the �lm width and it is ∼ 104

√
2/Nz

times higher than in the ideal structures. This indi-
cates their larger elastic �maneuvering space� with-
out any negative e�ect to the mechanical properties
of the given material (for example no breaking of
interatomic bonds) which leads to higher resistance
and higher melting point of the �lms with respect
to bulk samples.

3. All three acoustic frequencies in bulk-structures
vanish for k → 0, while in the �lms they tend to-
ward some minimal value depending on the �lm
width. This means that phonons in the �lms pos-
sess the energy gap, that for their excitation (cre-
ation) one should spend certain energy, i.e. heat
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them up to certain activation temperature, mean-
ing that the system up to that temperature be-
haves as the �frozen� one, as if the phonons were
not present.

4. Phonon gap, besides depending on the �lm width,
depends also on the type of the atoms and their dis-
tribution along z-direction and also on the stoichio-
metric relation of the atoms injected in the �lms.

5. The densities of phonon states and Debye's frequen-
cies have lower values in the �lms than in the corre-
sponding bulk-structures. This implies that in the
�lms, phonon excitations are more �di�cult� to ap-
pear, that they are less �present� and that created
acoustic phonons of the optical type (above the
activation temperature) are energetically �softer�
than the classical ones which appear in the bulk-
structures.

6. Since phonons with Debye's frequencies de�ne ther-
mal and electrical properties of the materials, this
means that �lms are worse thermal and electrical
conductors.

These analyses show that the �lms are better super-
conductors than the corresponding bulk samples, made
from the same material with the same crystalline struc-
ture. This statement, which is an experimental fact is
supported by the following of our results.

1. In the �lms there appear standing phonon waves
along z-directions, the collective property spe-
ci�c for the macroscopic quantum-mechanical state
which is the characteristics of the superconductors.
In the ideal structures, where there exist only plane
phonon waves, there is no such property.

2. The appearance of the energy gap in the phonon
spectrum of the �lms means that up to the acti-
vation temperature these systems behave as com-
pletely frozen, i.e. without any mechanical vibra-
tions which would cause the real resistance to the
electrical current conduction.

3. Lower values of Debye's frequencies in the �lms
could result in the higher values of (BCS) matrix
elements of the e�ective electron�electron interac-
tion. The attraction between paired electrons is
stronger, and one must spend more energy for their
destruction, so the critical temperature of these sys-
tems is higher.

Since phonons with Debye's frequencies are responsible
for electrical and thermal induced transport properties of
material [6, 7], it follows that the nano�lm structure will
be inferior electrical and thermic conductor in contrast
with the relative massive structures, providing there is
no chemical and structural di�erences between them.
On the other hand, it is well known fact that the

more inferior electrical conductor materials is (under nor-
mal conditions), the better superconductor it becomes

[11, 14]. Due to that, the experimental fact can be con-
cluded and justi�ed, that in spatially very con�ned struc-
tures more qualitative superconductive properties have
been achieved.
In the region of low temperatures, the thermal capac-

itance of �lm is lower than in massive structures, while
in medium temperatures it is reversed. Intersect point
of two curves at low temperatures is moving � with in-
crease of �lm thickness � towards lower temperatures.
Besides, it is noticeable that thermal capacitance of �lm
with decrease of temperature declines faster than that of
corresponding ideal structure, or slowly rises with the in-
crease of temperature � to a certain upper temperature.
Hence, for �lm heating from certain lower to a certain

upper temperature, it is necessary to use more thermal
energy per mass unit than for heating the same quan-
tity of corresponding (with the identical crystallograph-
ical parameters) unbounded structure to the same tem-
perature.
It is well known that poorer electric conductors are

better superconductors, so that in ultrathin �lms it is
possible to achieve much better superconducting proper-
ties!
The results obtained show that the thermal conductiv-

ity coe�cient of a �lm is considerably lower than that of a
bulk at low temperature, where the thermal conductivity
of bulk decreases as T 3. This result is practically applica-
ble: sandwich of several �lms would be a better thermal
insulator than the bulk-structure of the same thickness.
In accordance with the Wiedemann�Franz law, the

electrical conductivity is proportional to thermal conduc-
tivity. This leads to conclusion that �lms are worse elec-
trical conductors than bulk-structures of the same mate-
rial.
It could be interesting to estimate the superconduc-

tive properties, since worse conductors are, in principle,
better superconductors.
The results obtained here are compared to theoretical

results as well as to the experimental data from Refs.
[24�26].
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